若x>0,y>0,z>0,x+y+z=1,求证:1/x+1/y+1/z≥9 我来答 1个回答 #热议# 为什么有人显老,有人显年轻? 机器1718 2022-06-03 · TA获得超过6832个赞 知道小有建树答主 回答量:2805 采纳率:99% 帮助的人:160万 我也去答题访问个人页 关注 展开全部 百度的 参考下 可以用均值不等式: 左边=(1/x+1/y+1/z)(x+y+z) =1+1+1+x/y+y/x+y/z+z/y+x/z+z/x >=3+6√(x/y*y/x*y/z*z/y*x/z*z/x) =9 也可以用柯西不等式的推论: 左边>=(1+1+1)^2/(x+y+z)=9 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2023-03-02 已知 x+y>0, 求证 (x^2+1)+x>(y^2+1)-y 2020-03-26 若x=3,y=z=4,则表达式(z>=y>=x)?1:0结果是多少 2 2020-04-04 已知x>0,y>0,z>0,且x+y+z=1,求xyz的最大值? 1 2019-05-27 已知x>y>0,求证x+1/(x-y)x>=3 4 2020-04-29 已知x>0,y>0,x+y=1,求证:(1+1/x)(1+1/y)大于等于9 3 2020-04-29 已知X>0,y>0,x不等于y,求证1/x+1/y>4/(x+y). 2019-12-29 已知x>0,y>0,x+y=1求证(1+1/x)(1+1/y)>=9 4 2020-03-06 设x>0,y>0,z>0,且x^2+y^2+z^2=1 (1)求证:x^2/(1+9yz)+y^2/(1+9xz)+z^2/(1+9xy)>=1/4 为你推荐: