上限正无穷,下限负无穷,讨论e^xsinx的反常积分是否收敛
1个回答
展开全部
∫(e^x)sinxdx=∫sinxd(e^x)=(e^x)sinx-∫(e^x)cosxdx=(e^x)sinx-∫cosxd(e^x)
=(e^x)sinx-(e^x)cosx-∫(e^x)sinxdx
移项得2∫(e^x)sinxdx=(sinx-cosx)e^x,
故∫(e^x)sinxdx=(1/2)(sinx-cosx)e^x=(√2/2)[sin(x-π/4)]e^x.
广义积分【-∞,+∞】∫(e^x)sinxdx=【-∞,0】∫(e^x)sinxdx+【0,+∞】∫(e^x)sinxdx
=x→-∞lim{(√2/2)[sin(x-π/4)]e^x}+ x→+∞lim{(√2/2)[sin(x-π/4)]e^x}
= x→+∞lim{(√2/2)[sin(x-π/4)]e^x}=不存在(不趋于任何极限).
因此原积分发散.
=(e^x)sinx-(e^x)cosx-∫(e^x)sinxdx
移项得2∫(e^x)sinxdx=(sinx-cosx)e^x,
故∫(e^x)sinxdx=(1/2)(sinx-cosx)e^x=(√2/2)[sin(x-π/4)]e^x.
广义积分【-∞,+∞】∫(e^x)sinxdx=【-∞,0】∫(e^x)sinxdx+【0,+∞】∫(e^x)sinxdx
=x→-∞lim{(√2/2)[sin(x-π/4)]e^x}+ x→+∞lim{(√2/2)[sin(x-π/4)]e^x}
= x→+∞lim{(√2/2)[sin(x-π/4)]e^x}=不存在(不趋于任何极限).
因此原积分发散.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询