n分之一的前n项和是什么?

 我来答
拉拉啦啦啦爱度
2021-12-15 · TA获得超过9932个赞
知道答主
回答量:885
采纳率:0%
帮助的人:13.1万
展开全部

数列1/n的前n项和没有通项公式,但它存在极限值,当n趋于无穷大时,其极限值为ln2。

学过高等数学的人都知道,调和级数S=1+1/2+1/3+……是发散的,证明如下:

由于ln(1+1/n)ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)

=ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]

=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)

柯西收敛原理:

设{xn} 是一个数列,如果对任意ε>0,存在N∈Z*,只要 n 满足 n > N,则对于任意正整数p,都有|xn+p-xn|<ε,这样的数列{xn} 便称为柯西数列。

这种渐进稳定性与收敛性是等价的。即为充分必要条件

小熊生活百科
高能答主

2021-12-13 · 小熊帮你解决生活中的各种问题
小熊生活百科
采纳数:332 获赞数:50272

向TA提问 私信TA
展开全部

数列1/n的前n项和没有通项公式,但它存在极限值,当n趋于无穷大时,其极限值为ln2。

下面给出证明:

设a(n)=1/(n+1)+…+1/2n,(少了1/n,多了1/2n)

lim (1+1/n)^n=e,且(1+1/n)^n<e<(1+1/n)^(n+1)

取对数:(n+1)<ln(1+1/n)<1/n

设b(n)=1+1/2+1/3+...+1/n-lnn

b(n+1)-b(n)=1/(n+1)-ln(1+1/n)<0

又b(n)=1+1/2+1/3+...+1/n-lnn>ln2/1+ln3/2+ln4/3+...+ln(1+1/n)-lnn=ln(n+1)-lnn>0

等差数列的公式:

公差d=(an-a1)÷(n-1)(其中n大于或等于2)。

项数=(末项-首项来)÷公差+1。

末项=首项+(项数-1)×公差。

前n项的和Sn=首项×n+项数(项数-1)公差/2。

第n项的值an=首项+(项数-1)×公差。

等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式