二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y设法分为:
1、如果f(x)=P(x) ,Pn (x)为n阶多项式;
2、如果f(x)=P(x) e'a x,Pn (x)为n阶多项式。
一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为y'+p(x)y=0,另一类就是非齐次形式的,它可以表示为y'+p(x)y=Q(x)。
齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。