齐次方程的通解是什么?
1个回答
展开全部
齐次方程的通解,可以把齐次方程组的系数矩阵看成是向量组。
令自由元中一个版为 1 ,其余为 0 ,求得 n – r 个解向量,即为一个基础解系。齐次线性方程组AX= 0:若X1,X2… ,Xn-r为基础解系,则权X=k1 X1+ k2 X2 +…+kn-rXn-r,即为AX= 0的全部解(或称方程组的通解)。
应用
"齐次"从词面上解释是"次数相等"的意思。
微分方程中有两个地方用到"齐次"的叫法:
1、形如y'=f(y/x)的方程称为"齐次方程",这里是指方程中每一项关于x、y的次数都是相等的,例如x^2,xy,y^2都算是二次项,而y/x算0次项,方程y'=1+y/x中每一项都是0次项,所以是"齐次方程"。
2、形如y''+py'+qy=0(其中p和q为关于x的函数)的方程称为"齐次线性方程",这里"线性"是指方程中每一项关于未知函数y及其导数y',y'',……的次数都是相等的(都是一次),"齐次"是指方程中没有自由项(不包含y及其导数的项),方程y''+py'+qy=x就不是"齐次"的,因为方程右边的项x不含y及y的导数,因而就要称为"非齐次线性方程"。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询