为什么lim(1+1/x)^x极限是E?求证明

 我来答
新科技17
2022-06-20 · TA获得超过5907个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.2万
展开全部
e 是从lim(1+1/x)^x 定义出来的,e的意义在於 e^x 的微分导数等於e^x,
至於lim(1+1/x)^x= 2.7182.就用很大的数字代入(1+1/x)^x或用很小的数字代入(1+x)^(1/x)你都可以得到e 的近似,而这是无理数,你永远也不能找到尽头,问题是lim(1+1/x)^x=e 而e这个数是否有这神奇的特性:e^x 的微分导数等於e^x,自己.
我们 试做一个微分 y=a^x
y'= lim(△x->0) [a^(x+ △x) - a^x]/ △x
= lim(△x->0) a^x [a^ △x) - 1]/ △x
问题是a是什麼数字能使 [a^ △x - 1]=△x 那就会y' = a^x
而答案就是a= (1+△x)^(1/△x) ,{[(1+△x)^(1/△x) ]^ △x - 1}= △x
所以y' = lim(△x->0) a^x [a^ △x) - 1]/ △x
= a^x 而a = lim(△x->0) (1+△x)^(1/△x)
而a 这个数我们叫e 它的数值可以通过代入很大的数字於(1+1/x)^x或用很小的数字代入(1+x)^(1/x)去逼近
如果满意就选我,不明白我再补充
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式