在平行四边形ABCD中,∠DBC=15°,∠ACB=30°,求∠BAC=多少度

 我来答
hbc3193034
2022-08-21 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
设AC与BD交于O,则
∠BOC=180°-(15°+30°)=135°,
在△BOC中由正弦定理,OC/sin15°=OB/sin30°=BC/sin45°,
设OC=1,则OB=2cos15°=(√6+√2)/2,
BC=sin45°/sin15°=4/[√2(√6-√2)]=√3+1.
AC=2OC=2,
在△ABC中由余弦定理,AB^2=4+(√3+1)^2-2(√3+1)*√3
=4+4+2√3-6-2√3=2,
AB=√2,
cos∠BAC=(2+4-4-2√3)/(4√2)=(√2-√6)/4,
所以∠BAC=105°。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式