
已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E。
⑴试说明:四边形ADCE为矩形;⑵当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明。...
⑴试说明:四边形ADCE为矩形;
⑵当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明。 展开
⑵当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明。 展开
2个回答
展开全部
∠BAC=180-(∠ABC+∠C)=180-4∠C
∠1=∠BAC/2=90-2∠C
∠ABE=90-∠1=2∠C
延长BE交AC于F
因为,∠1 =∠2,BE⊥AE
所以,△ABF是等腰三角形
AB=AF,BF=2BE
∠FBC=∠ABC-∠ABE=3∠C-2∠C=∠C
BF=CF
AC-AB=AC-AF=CF=BF=2BE
∠1=∠BAC/2=90-2∠C
∠ABE=90-∠1=2∠C
延长BE交AC于F
因为,∠1 =∠2,BE⊥AE
所以,△ABF是等腰三角形
AB=AF,BF=2BE
∠FBC=∠ABC-∠ABE=3∠C-2∠C=∠C
BF=CF
AC-AB=AC-AF=CF=BF=2BE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询