已知以F为焦点的抛物线y^2=4x上的两个点A,B满足向量AF=3倍向量FB,则弦AB的中点到准线的距离为?

求过程啊谢谢了... 求过程啊 谢谢了 展开
fnxnmn
2010-12-01 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6710万
展开全部
设抛物线的准线为l:x=-1. 设|FB|=m,则|FA|=3m.
过A、B两点向准线l作垂线AC、BD,,
由抛物线定义知:|AC|=|FA|=3m, |BD|=|FB|=m,
过B作BE⊥AC,E为垂足。
|AE|=|AC|-|CE|=|AC|-|BD|=3m-m=2m.
|AB|=|FA|+|FB|=4m.
在直角三角形AEB中,|BE|=√(|AB|²-|AE|²)=2√3m,
tan∠BAE=|BE|/|AE|=√3,
直线的斜率k= tan∠AFx= tan∠BAE=√3.

焦点F坐标为(1,0),
直线方程为y=√3(x-1).与抛物线方程y²=4x联立并消去y得:
3x²-10x+3=0,x=3或1/3.
所以弦AB的中点的横坐标为(3+1/3)/2=5/3.
准线为l:x=-1.
所以弦AB的中点到准线的距离为5/3+1=8/3.
qplvs12
2010-12-01 · TA获得超过2155个赞
知道小有建树答主
回答量:1636
采纳率:0%
帮助的人:952万
展开全部
y²=4x得F(1,0)
|PF|+|PA|≥2√(|PF|•|PA|),当且仅当|PF|=|PA|时取等号,即当|PF|=|PA|时,|PF|+|PA|有最小值
|PF|=|PA|,则P在|AF|的垂直平分线上
F(1,0),A(3,-2)可得|AF|的方程y=-x+1,x∈[1,3]
|AF|的斜率为-1则垂直于|AF|的直线的斜率为1
F(1,0),A(3,-2)可得|AF|的中点(2,-1)
斜率为1,且过点(2,-1)的直线的方程为y=x-3
当|PF|=|PA|取最小值时,P即y²=4x与y=x-3点交点
(x-3)²=4x
x²-10x+9=0
(x-1)(x-9)=0
x=1
y=-2
P(1,-2),<P(9,6)时的|PF|+|PA|显然大于P(9,6)时的|PF|+|PA|,因此舍去>

|PF|=|PA|=√[(1-1)²+(-2-0)²]=2
|PF|+|PA|的最小值为4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式