高中导数的定义?

 我来答
远景教育17
2022-10-15 · TA获得超过5145个赞
知道小有建树答主
回答量:241
采纳率:0%
帮助的人:78.2万
展开全部
问题一:高中导数的导是什么概念 我的理解,导数中的“导”字可能是“引导,导向”的意思。因为导数反映了原函数在某点处切线的方向,就像一个交警指示前进方向一样,导数引导了原函数在此处的上升或下降。

问题二:高中数学中,导数主要有什么概念和意义? 导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。
导数定义
[1](一)导数第一定义:设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第一定义
(二)导数第二定义:设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即
导数第二定义
(三)导函数与导数:如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。

问题三:高中导数的含义到底什么意思,,概念看不懂 是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。

问题四:高中导数的 *** 概念

问题五:高中导数? 10分 构建辅助函数需要一定的技巧,在不等式问题中应用较多。简单回复一下,有几个例子,仅供参考。

问题六:高中数学导数的概念问题 3.b
这个就是导数的定义啊,这个极限的值就是f'(x0)啊当然跟 x0有关了, 但是与h毫无关系
楼下的d不对,在这个点处的导数值 当然跟x0有关了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式