定积分求体积方法有哪些?

 我来答
糖果的旅行日记
2023-01-14 · TA获得超过265个赞
知道小有建树答主
回答量:883
采纳率:100%
帮助的人:15.5万
展开全部

定积分求体积方法:圆盘法、壳层法。

圆盘法:

一条曲线y=f(x),如果曲线绕x轴旋转,则曲线经过的区域将形成一个橄榄球形状的体积。依然按照黎曼和切片的思路去计算,将矩形绕x轴旋转一周将得到一个半径为y,高度为dx的圆盘。该圆盘的面积S(x)≈π(f(x))2,体积:Δv≈S(x)Δx,如果将整个图形的体积切成n个圆盘。

壳层法:

假设坩埚内壁的横截面曲线是y = x2,深度是a,计算坩埚的容积。矩形绕y轴旋转一周将得到一个圆环,其厚度是dx,半径是x,高度是a–x2。如果展开圆环,将得到一个底面积是圆环周长,高度是dx的长方体。就可以得出体积。

定积分的定义:

是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式