如何求点到面的距离?
求点到面的距离即求已知点与该点在已知面上的射影之间的距离。可构成三角形用勾股定理解。
1、设平面的法向量是n,Q是这平面内任意一点,则空间点P到这个平面的距离:d=|QP·n|/|n|,这里QP表示以Q为起点、P为终点的向量。
距离d是向量QP在法向量n上投影的绝对值,即
d=|Pij<n>QP|=||daoQP|*cos<QP,n>|=||n|*|QP|*cos<QP,n>|/|n|
==|QP·n|/|n|。
2、设直线的方向向量是s,Q是这直线上任意一点,则空间点P转这直线的距离:d=|QP×s|/|s|,这里QP表示以Q为起点、P为终点的向量。
距离d是以向量QP、向量s为邻边的平行四边形s边上的高,所以
d=|QP|*sin<QP,s>=[|s|*|QP|*sin<QP,s>]/|s|=|QP×s|/|s|。
扩展资料:
证明的思路为:从A点画一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。
设△ABC为一直角三角形,其直角为∠CAB。
其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
参考资料来源:百度百科-勾股定理