1.013保留一位有效数字
1.013保留一位有效数字是:1
解析:从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。就是一个数从左边第一个不为0的数字数起到末尾数字为止,所有的数字(包括0,科学计数法不计10的N次方),称为有效数字。
简单的说,把一个数字前面的0都去掉,从第一个正整数到精确的数位止所有的都是有效数字了。1.013的有效数字是1、0、1、3四位。所以保留一位就是:1
例如:0.078 和 0.78 与小数点无关,均为两位有效数字。如 506 和 220 都为3位有效数字。但当数字为 220.0 时称为4个有效数字。
扩展资料:
一:正确表示
1、有效数字中只应保留一位欠准数字,因此在记录测量数据时,只有最后一位有效数字是欠准数字。
2、在欠准数字中,要特别注意0的情况。0在非零数字之间与末尾时均为有效数;在小数点前或小数点后均不为有效数字。
3、π等常数,具有无限位数的有效数字,在运算时可根据需要取适当的位数。
二:不确定度
有效数字的末位是估读数字,存在不确定性.一般情况下不确定度的有效数字只取一位,其数位即是测量结果的存疑数字的位置;有时不确定度需要取两位数字,其最后一个数位才与测量结果的存疑数字的位置对应。
由于有效数字的最后一位是不确定度所在的位置,因此有效数字在一定程度上反映了测量值的不确定度(或误差限值)。测量值的有效数字位数越多,测量的相对不确定度越小;有效数字位数越少,相对不确定度就越大.可见,有效数字可以粗略反映测量结果的不确定度。
例子:d=(10.430±0.3)是不对的,只能写成d=(10.4±0.3)
参考资料来源:百度百科--有效数字