用反证法证明 根号2 是无理数
1个回答
展开全部
分类: 教育/科学 >> 学习帮助
问题描述:
求过程
解析:
假设根号2为有理数,那么存在两个互质的正整数p,q,使得:
根号2=p/q
于是
p=(根号2)q
两边平方得
p^2=2q^2(“^”是几次方的意思)
由2q^2是偶数,可得p^2是偶数。而只有偶数的平方才是偶数,所以p也是偶数。
因此可设p=2s,代入上式,得:
4s^2=2q^2,
即
q^2=2s^2.
所以q也是偶数。这样,p,q都是偶数,不互质,这与假设p,q互质矛盾。
这个矛盾说明,根号2不能写成分数的形式,即根号2不是有理数。
问题描述:
求过程
解析:
假设根号2为有理数,那么存在两个互质的正整数p,q,使得:
根号2=p/q
于是
p=(根号2)q
两边平方得
p^2=2q^2(“^”是几次方的意思)
由2q^2是偶数,可得p^2是偶数。而只有偶数的平方才是偶数,所以p也是偶数。
因此可设p=2s,代入上式,得:
4s^2=2q^2,
即
q^2=2s^2.
所以q也是偶数。这样,p,q都是偶数,不互质,这与假设p,q互质矛盾。
这个矛盾说明,根号2不能写成分数的形式,即根号2不是有理数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询