如图 ,△ABC中,AB=AC,AD BE分别是BC AC边上的高,AD于BE交于点F,且AE=BE。 求证AF=2CD

jfaau02
2010-12-01 · TA获得超过358个赞
知道答主
回答量:265
采纳率:100%
帮助的人:49万
展开全部
解:延长BE,到EF 使EF=BE ∵AE=EC
∴得△AEF≌△BCE
∴∠AFB=∠FBC
∴AF‖BC
延长BC,过F点作BC垂线交于M点 ∵AD⊥BC ∴∠ADB=90°
∴得到FM=AD=18(平行线间的距离相等)
BF=BE+EF=2BE=2*15=30
在△FMB中,用勾股定理
求出:BM=24
再连接FC ∵AF平行且等于BC ∴四边形AFCB是平行四边形
∴AB=FC ∵∠FMB=90°=∠ADB 且还有FM=AD
∴易证△ADB≌△FCM
∴MC=BD ∵AB=AC ∴三线合一
∴BD=DC=MC
∵BD+DC+MC=BM=24
∴BD=8 BC=16
S△ABC=16*18/2=144

嘿嘿,如果觉得好的话,给点分哦!
我可以帮助你,你先设置我最佳答案后,我百度Hii教你。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式