概率论,第4题,求解
1个回答
展开全部
X~N(3, 2^2),正态分布 μ=3, σ=2
f(x) = 1/( 2sqrt(2π) ) e^( (x-3)^2/8)
P{x1<X<x2} = Φ ((x2-μ)/σ) - Φ ((x1-μ)/σ)
Φ (-x) = 1 - Φ (x)
(1) P{2<X<5} = Φ(1) - Φ(-1/2) = Φ(1) + Φ(1/2) - 1
(2) P{-2<X<7} = Φ(2) - Φ(-5/2) = Φ(2) + Φ(5/2) - 1
(3) P1 = P{-2<X<2} = Φ (-1/2) - Φ (-5/2) = 1 - Φ(1/2) + Φ(5/2) - 1 =Φ(5/2) - Φ(1/2)
P{|X|>2} = 1 - P1 = 1 + Φ(1/2) - Φ(5/2)
(4) P{X>3} = Φ(0) = 1/2
(5) 显然
P{X>c} = 1-Φ((c-3)/2)
P{X<=c} = Φ((c-3)/2)
P{X>c} = P{X<=c}
Φ((c-3)/2) =1/2
(c-3)/2 = 0
c = 3
f(x) = 1/( 2sqrt(2π) ) e^( (x-3)^2/8)
P{x1<X<x2} = Φ ((x2-μ)/σ) - Φ ((x1-μ)/σ)
Φ (-x) = 1 - Φ (x)
(1) P{2<X<5} = Φ(1) - Φ(-1/2) = Φ(1) + Φ(1/2) - 1
(2) P{-2<X<7} = Φ(2) - Φ(-5/2) = Φ(2) + Φ(5/2) - 1
(3) P1 = P{-2<X<2} = Φ (-1/2) - Φ (-5/2) = 1 - Φ(1/2) + Φ(5/2) - 1 =Φ(5/2) - Φ(1/2)
P{|X|>2} = 1 - P1 = 1 + Φ(1/2) - Φ(5/2)
(4) P{X>3} = Φ(0) = 1/2
(5) 显然
P{X>c} = 1-Φ((c-3)/2)
P{X<=c} = Φ((c-3)/2)
P{X>c} = P{X<=c}
Φ((c-3)/2) =1/2
(c-3)/2 = 0
c = 3
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询