高中数学~!!急求急求急求~!! 20

若线段AB平行于投影面,是AB上一点,AO:OB=m:n,O的平行投影O′分AB的平行投影A′B′O且则的长度之比为?... 若线段AB 平行于投影面, 是AB 上一点, AO : OB = m : n , O 的平行投影O ′ 分AB 的
平行投影A′B ′ O 且则的长度之比为?
展开
百度网友a974616
2010-12-01 · TA获得超过2716个赞
知道小有建树答主
回答量:1719
采纳率:0%
帮助的人:1154万
展开全部
一元三次方程是型如ax^3+bx^2+cx+d+0的标准型
其解法如下
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了
你的串号我已经记下,采纳后我会帮你制作
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
金宝兄弟纸业
2025-09-15 广告
提到办公用纸的厂家,金宝兄弟纸业可以了解一下。深圳市金宝兄弟纸业有限公司专业从事各类办公用纸、印刷、生产与服务。公司拥有切纸机、印刷机器加工设备;全自动高速卷筒分切机、平切机、全自动包装机、电脑打印纸机、不干胶柔版印刷机、六色印刷机等设备。... 点击进入详情页
本回答由金宝兄弟纸业提供
糖北爽v
2010-11-30 · TA获得超过4208个赞
知道小有建树答主
回答量:980
采纳率:0%
帮助的人:1419万
展开全部
因为AB平行于投影面,所以AB与A'B'平行。连AA',BB',OO',有AA'||BB'||OO'
所以AO/BO=A'O'/B'O'=m:n
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zqs626290
2010-11-30 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:6843万
展开全部
比不变
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式