微分方程和常微分方程有什么区别

 我来答
妖感肉灵10
2022-11-17 · TA获得超过6.3万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.3亿
展开全部

两者不存在区别之分,因为两者是包含与被包含的关系。微分方程包括常微分方程。

微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。

未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。

含有未知函数的导数,如  的方程是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。

微分方程是伴随着微积分学一起发展起来的。

扩展资料

微分方程的应用:

是重要工具之一。流体力学、超导技术、量子力学、数理金融中的稳定性分析、材料科学、模式识别、信号(图像)处理 、工业控制、输配电、遥感测控、传染病分析、天气预报等领域都需要它。 

微分方程的解:

偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”。

在常微分方程方面,一阶方程中可求得通解的,除了线性方程、可分离变量方程和用特殊方法变成这两种方程的方程之外,维数是很小的。

高阶方程中,线性方程仍可以用叠加原理求解,即n阶齐次方程的通解是它的n个独立特解的线性组合,其系数是任意常数。非齐次方程的通解等于相应齐次方程的通解加上非齐次方程的特解,这个特解并且可以用常数变易法通过求积分求得。

求齐次方程的特解,当系数是常数时可归结为求一代数方程的根,这个代数方程的次数则是原方程的阶数;当系数是变数时,则只有二种极特殊的情况(欧拉方程、拉普拉斯方程)可以求得。

至于非线性高阶方程则除了少数几种可降阶情形(如方程(1)就是这几种情形都有的一个方程)之外,可以求得通解的为数就更小了。n阶方程也可以化为一阶方程组(未知函数的个数和方程的个数都等于 n)早已为人们所知,并且在此后起着一定作用,但对通解的寻求仍无济于事。

参考资料来源:百度百科-微分方程

火丰科技
2024-11-28 广告
惯性测量单元(IMU)是火丰科技(深圳)有限公司重要的技术产品之一,它是一种测量物体三轴姿态角(或角速率)及加速度的装置。IMU内置加速度传感器和陀螺仪,能够测量来自三个方向的线性加速度和旋转角速率,通过解算获得载体的姿态、速度和位移等信息... 点击进入详情页
本回答由火丰科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式