打开手电筒1秒后立即关闭,发出的光能照射到宇宙边缘吗?

 我来答
华源网络
2022-08-04 · TA获得超过5606个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:149万
展开全部

我们知道,哈勃望远镜可以观测到的目标最远是距离地球130亿光年的原始星系,也就是说,来自130亿光年的光子都能够照射到地球上。

既然如此,如果我们用一个手电筒,打开1秒之后立即关闭,那么这束光是消失了还是会继续飞行,如果能够继续飞行的话,那么这束光是否能够飞到宇宙边缘?

在牛顿生活的时代,人们对于光是波还是粒子争论不休,而牛顿认为光是一种粒子,原因是因为光能够被反射,说明它具有粒子性。牛顿虽然在当时已经是大佬,但也有人反对他,认为光是一种波,原因是光的衍射。

粒子论和波论谁也无法说动谁,但由于牛顿神一样的地位,以至于在当时光是一种粒子占据了上风。

再后来,麦克斯韦提出了麦克斯韦方程,统一了电与磁,并预言光是一种电磁波。后来赫兹通过实验证明了光是一种电磁波。

此时,牛顿和麦克斯韦之间出现了一个不可调和的矛盾:光究竟是波还是粒子。事实上无论是哪个回答,人们都有足够的证据支持。

为了解释这个无法调和的问题,爱因斯坦将两者结合了起来,并在1905年发表了《有关光的产生与转换的一个试探性观点》,提出了光量子假说,并且揭开了光的波动性和粒子性的两元特性。后来,德布罗意提出了“物质波”假说,他认为一切物质和光一样具有波粒二象性。

由于这个理论和人们认知的不符合,所以在当时有很多科学家反对,其中就包括物理学家罗伯特.密立根,他为了反驳爱因斯坦,做了大量光电实验,令人意外的是他的结果却证实了爱因斯坦理论的正确性。

后来,爱因斯坦凭借光电效应获得了诺贝尔奖,而物理学家罗伯特.密立根也紧随其后拿到了诺贝尔奖。

通过这个实验,我们能够知道,由于光具有粒子性,而且光子的静止质量是0,半衰期无限长。因此当我们打开手电筒时,只要没有物体的阻隔,手电筒发射的光子就可以以光速一直飞行。 但由于手电筒发射的光子较少,如果遇到阻挡可能会被吸收,以至于最后会消失。 实际上,我们发射的光子不可能穿越大气层,因为大气层有很多物质,这些物质会吸收或者反射光子。

想要了解光子能不能达到宇宙的边界,我们首先要知道宇宙有没有边界。在哈勃之前,人们一直认为宇宙是静态宇宙,宇宙的空间既不会变大,也不会缩小。

但哈勃通过望远镜观测到了星系红移现象,这意味着宇宙可能正在膨胀。原因很简单,如果只有一两个星系远离地球,那么它们红移的速度应该有区别,而且也应该有其他星系靠近地球才是,然而哈勃却发现离地球越远的星球红移现象越严重,这意味着并不是星系在运动,而是宇宙的空间在整体运动。

我们可以把宇宙看做是一个气球,如果在气球上画满了点,每一个点代表一个星系,那么当我们把气球吹大时,星系之间的距离就会增大。

后来人们根据哈勃的发现,向后倒推认为这些星系可能之前彼此距离非常近,甚至宇宙有可能存在着一个奇点,并根据这些提出了宇宙大爆炸理论。

宇宙大爆炸后,宇宙开始膨胀,但是膨胀的速度并不是固定的。

按照宇宙大爆炸理论,宇宙在极其短的时间内,空间从芝麻大的空间,扩大到可观测宇宙那么大(直径930亿光年),再把可观测宇宙看成是一粒芝麻,然后再扩大到可观测宇宙那么大。之后,由于引力的存在,使得宇宙开始减速膨胀。

然而,现在科学家们观测到,宇宙中不仅仅只有引力,还有一种不参与电磁反应的暗物质、暗能量,之所以叫做暗物质、暗能量是因为目前我们无法观测到它们,只知道暗物质提供了引力,而暗能量提供了斥力。

由于目前暗能量占据了主导地位,所以使得宇宙开始加速膨胀,而且宇宙膨胀的速度超过了光速。这意味着,如果我们现在打开手电筒,即便是光子可以从地球上飞出去(实际上这是不可能发生的),也永远达不到宇宙边界。

生活中常见的问题,其实答案一点儿也不简单。手电筒光能否触达到宇宙边缘的问题,就包含着:光的性质、宇宙大爆炸、暗物质暗能量等理论。通过这些理论,我们能够得出一个结论:手电筒的光无法触达宇宙的边缘,因为宇宙膨胀的速度已经超过了光速。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北京航源高科科技有限公司_
2024-11-26 广告
NFC感应线圈是北京航源高科科技有限公司专业研发与生产的关键组件之一。该线圈采用高品质材料精制而成,具有优异的感应性能和稳定的传输能力。在NFC(近场通信)技术中,感应线圈扮演着至关重要的角色,它负责实现设备间的无线数据传输和能量交换。我们... 点击进入详情页
本回答由北京航源高科科技有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式