定积分的几何意义是什么?

 我来答
一粥美食
高能答主

2023-04-10 · 专注为您带来别样视角的美食解说
一粥美食
采纳数:7300 获赞数:462705

向TA提问 私信TA
展开全部

定积分的几何意义是曲边梯形的有向面积,物理意义是变速直线运动的路程或变力所做的功。

二重积分的几何意义是曲顶柱体的有向体积,物理意义是加在平面面积上压力(压强可变)。

积分的线性性质:

性质1(积分可加性)函数和(差)的二重积分等于各函数二重积分的和(差)

性质2(积分满足数乘)被积函数的常系数因子可以提到积分号外比较性:

性质3 如果在区域D上有f(x,y)≦g(x,y)估值性:性质4设M和m分别是函数f(x,y)在有界闭区域D上的最大值和最小值,σ为区域D的面积性质5如果在有界闭区域D上f(x,y)=k(k为常数),σ为D的面积,则Sσ=k∫∫dσ=kσ。

二重积分中值定理:设函数f(x,y)在有界闭区域D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η)。

求解方法

二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。

其积分区域D是由所围成的区域。

其中二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。

故这个函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。

设Ω为空间有界闭区域,f(x,y,z)在Ω上连续。

(1)如果Ω关于xOy(或xOz或yOz)对称,且f(x,y,z)关于z(或y或x)为奇函数

(2)如果Ω关于xOy(或xOz或yOz)对称,Ω1为Ω在相应的坐标面某一侧部分,且f(x,y,z)关于z(或y或x)为偶函数

(3)如果Ω与Ω’关于平面y=x对称

图为信息科技(深圳)有限公司
2021-01-25 广告
设a(t)是几何体内部的一条光滑曲线,t是弧长参数(就是说,a(t)有单位速度),S(t)是通过点a(t)并且和a(t)的切向量垂直的横截面的面积。则 \int S(t) dt 就是这几何体的体积。这是个一元积分。 举个例子,设a(t) =... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式