线性代数中符号diag是什么意思
对角矩阵。
对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。
对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。
扩展资料:
性质
设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。
判断相似矩阵的必要条件
设有n阶矩阵A和B,若A和B相似(A∽B),则有:
1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;
2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|;
3、A的迹等于B的迹——trA=trB/
参考资料来源:百度百科-对角矩阵
2025-01-06 广告
线性代数中符号diag表示一个对角矩阵(即指除了主对角线外的元素均为零的方阵)。对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。
diag函数在FreeMat、Matlab中该函数用于构造一个对角矩阵,不在对角线上元素全为0的方阵,或者以向量的形式返回一个矩阵上对角线元素。
语法格式:FreeMat中该函数语法:y = diag(x,n);如果x是一个矩阵,y就是x中第n条对角线上的元素。如果n被忽略,n的默认值是0,即返回主对角线上元素。
扩展资料:
1、同阶对角阵的和、差仍是对角阵,有:
2、数与对角阵的乘积仍为对角阵,有:
3、n阶矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量。
参考资料来源:百度百科-diag
参考资料来源:百度百科-对角矩阵
线性代数中符号diag是对角矩阵。
对角矩阵是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵。
对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。
扩展资料:
若n阶矩阵A有n个不同的特征值,则A必能相似于对角矩阵。
说明:当A的特征方程有重根时.就不一定有n个线性无关的特征向量,从而未必能对角化。
设δ是数域P上n维线性空间V的一个线性变换,则有以下结论:
(1)δ在某组基下的矩阵为对角阵的充要条件是δ有n个线性无关的特征向量;
(2)δ属于不同特征值的特征向量线性无关。
由此可得,如果δ有n个互不相同的特征值,则δ在某组基下矩阵为对角阵。
特别地,复数域上的线性空间中,如果其线性变换δ的特征多项式没有重根,则δ在某组基下矩阵为对角阵。
参考资料来源:百度百科-对角矩阵
还有线性代数函数有关的:
det(求行列式值),inv(矩阵的求逆),qr(二次余数分解),svd(奇异值分解),bdiag(求广义本征值),spec(求本征值),schur(schur分解),trace(求对角线元素总和)
参考资料: 百度知道