拉格朗日中值定理求极限的适用范围

 我来答
帐号已注销
2023-04-10 · TA获得超过1471个赞
知道大有可为答主
回答量:1.1万
采纳率:97%
帮助的人:238万
展开全部

拉格朗日中值定理求极限的适用范围介绍如下:

函数f(x)在闭区间上[a,b]连续,在开区间(a,b)上可导,那么在开区间(a,b)内至少存在一点ξ使得f'(ξ)=(f(b)-f(a))/(b-a) 。

拉格朗日中值定理

拉格朗日中值定理(英文:Lagrange mean value theorem或Lagrange’s Mean Value Theorem,又称:拉氏定理、有限增量定理)是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。

定理的现代形式如下:如果函数f(x)在闭区间上[a,b]连续,在开区间(a,b)上可导,那么在开区间(a,b)内至少存在一点ξ使得f'(ξ)=(f(b)-f(a))/(b-a) 。

1797年,拉格朗日中值定理被法国数学家约瑟夫·拉格朗日在《解析函数论》中首先给出,并提供了最初的证明。现代形式的拉格朗日中值定理是由法国数学家O.博内给出 。

拉格朗日中值定理沟通了函数与其导数的联系, 在研究函数的单调性、凹凸性以及不等式的证明等方面, 都可能会用到拉格朗日中值定理

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式