高数求不定积分!过程

看涆余
2010-12-02 · TA获得超过6.7万个赞
知道大有可为答主
回答量:7626
采纳率:85%
帮助的人:4308万
展开全部
设t=x^(1/6),x=t^6,dx=6t^5dt,
原式=∫6t^5dt/[t^3*√(1+t^2)]
=6∫t^2dt/√(1+t^2)
=6∫(1+t^2)dt/*√(1+t^2)-6∫dt/*√(1+t^2)
=6∫√(1+t^2)dt-6∫dt/*√(1+t^2)
=6*(t/2)√(1+t^2)+6(1/2)ln[t+√(1+t^2)]-6ln[t+√(1+t^2)]
=3t√(1+t^2)-3ln[t+√(1+t^2)]
=3x^(1/6)*[1+x^(1/3)]-3ln{x^(1/6)+√[1+x^(1/3)]}+C.
对于∫dt/√(1+t^2)可用三角函数代换。

用三角函数代换和分部积分:
原式=∫6t^5dt/[t^3*√(1+t^2)]
=6∫t^2dt/√(1+t^2)
设t=tanθ,dt=(secθ)^2dθ.
原式=6∫(tanθ)^2*(secθ)^2dθ/secθ
=6∫[(secθ)^2-1]secθdθ
=6∫(secθ)^3dθ-6∫secθdθ,
∫(secθ)^3dθ=∫(secθ)dtanθ
=secθtanθ-∫(tanθ)dsecθ
=secθtanθ-∫(tanθ)^2secθdθ
=secθtanθ-∫(secθ)^3dθ+∫secθdθ
∫(secθ)^3dθ=(secθtanθ)/2+(1/2)∫secθdθ
=(secθtanθ)/2+(1/2)ln|secθ+tanθ|+C1,
原式=3secθtanθ+3ln|secθ+tanθ|-6ln|secθ+tanθ|+C
=3x^(1/6)*[1+x^(1/3)]-3ln{x^(1/6)+√[1+x^(1/3)]}+C.
111010000000
2010-12-01 · TA获得超过1.7万个赞
知道大有可为答主
回答量:4517
采纳率:0%
帮助的人:4854万
展开全部
设 X=(tan(t))^6 原式化简为: =∫ [6(sec(t))(tan(t))^2] dt 整理: =6 ∫ (sec(t))(tan(t))^2] dt =6 ∫ tan(t) d(sect) 稍后请看图: https://gss0.baidu.com/7LsWdDW5_xN3otqbppnN2DJv/111010000000/pic/item/4b71971368dd6e6fdc5401f2.jpg
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2010-12-01
展开全部
2楼那个第三步就错了,晕…
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式