为什么可以证明方程组AX= B有0解?
1个回答
展开全部
对于方程组AX=0,显然有零解,
如果|A|不为0,则A可逆,等式两边同时左乘A逆,得到
X=0,即只有零解。
如果|A|=0,则系数矩阵不是满秩的,也就是说方程组中有些方程是多余的(可以初等行变换,化为0)
从而有无穷多的解(可以通过基础解系来表示)。
对于方程组AX=b,原理类似,
如果|A|不为0,则A可逆,等式两边同时左乘A逆,得到
X=A逆b,即只有唯一解。
如果|A|=0,就要分两种情况来讨论:
1)r(A) =r(A|b) 此时有无穷多组解
2)r(A)不等于r(A|b) 此时方程组无解
如果|A|不为0,则A可逆,等式两边同时左乘A逆,得到
X=0,即只有零解。
如果|A|=0,则系数矩阵不是满秩的,也就是说方程组中有些方程是多余的(可以初等行变换,化为0)
从而有无穷多的解(可以通过基础解系来表示)。
对于方程组AX=b,原理类似,
如果|A|不为0,则A可逆,等式两边同时左乘A逆,得到
X=A逆b,即只有唯一解。
如果|A|=0,就要分两种情况来讨论:
1)r(A) =r(A|b) 此时有无穷多组解
2)r(A)不等于r(A|b) 此时方程组无解
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询