什么是定积分,有什么运算法则吗?
2个回答
展开全部
积分四则运算常用法则:
1)∫0dx=c 不定积分的定义
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4) ∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。
积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。
通常意义上的积分都满足一些基本的性质。以下积分区域 在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。积分的性质有:线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。
线性性积分是线性的。如果一个函数f 可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
展开全部
定积分基本公式:积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有。一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。[jiajublog.cn]
[imageeasy.cn]
[khwz.c o m.cn]
[lfyakeli.cn]
[mil001.c o m.cn]
[hldxc8.cn]
[rx0752.cn]
[goutu.net.cn]
[lovegohk.cn]
[18026592783.cn]
[imageeasy.cn]
[khwz.c o m.cn]
[lfyakeli.cn]
[mil001.c o m.cn]
[hldxc8.cn]
[rx0752.cn]
[goutu.net.cn]
[lovegohk.cn]
[18026592783.cn]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询