全等三角形的性质和判定
展开全部
全等三角形的性质和判定介绍如下:
性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等
3.全等三角形的对应顶点位置相等。
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应中线相等。
7.全等三角形面积相等。
8.全等三角形周长相等。
9.全等三角形可以完全重合。
判定定律:
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)
2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
6.三条中线(或高、角平分线)分别对应相等的两个三角形全等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询