已知等差数列an的前n项和为sn,且s13>s6>s14,a2=24①求公差d的取值范围②问数列{sn}是否存在最大项

fnxnmn
2010-12-02 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6682万
展开全部
A(n)=A1+(n-1)d.
S(n)=na1+n(n-1)d/2.
A2=A1+d=24
因为S13>S6>S14 即13A1+78d>6A1+15d>14A1+91d
将A1=24-d代入上述不等式,
13(24-d) +78d>6(24-d)+15d>14(24-d)+91d
解得-3<d<-48/17

因为d为负数, 即{An}递减.
令An =A1+(n-1)d≥0,
将A1=24-d代入得:24-d+(n-1)d≥0,
(n-2)d≥-24,n-2≤-24/d, n≤-24/d+2,
因为-3<d<-48/17,所以-17/48<1/d<-1/3,
10<-24/d+2<10.5
而n≤-24/d+2,所以n≤10时,An≥0,
即数列{An}前10项为正,以后各项为负,
所以Sn最大时,n=10.
cl07021
2010-12-02
知道答主
回答量:34
采纳率:0%
帮助的人:0
展开全部
1:an=a1+(n-1)d =>a2=a1+d=24 =>a1=24-d;
s13>s6 =>13a1+13*12/2d>6a1+6*5/2d =>d>-3
s6>s14 =>6a1+6*5/2d>14a1+14*13/2d =>d<-48/17
d∈(-3,-48/17);
2: sn=na1+n*(n-1)/2*d=n(24-d)+d/2(n^2-n)=d/2*n^2+(24-d-d/2)n=
d/2((n^2+(48/d-3)n)=d/2(n+24/d-3/2)^2-(24/d-3/2)^2
抛物线的中点为n=3/2-24/d∈(-∞,9.5)∨(10,+∞) 开口向下
所以当n=9时 sn有最大值 sn=d/2*81+(24-3/2d)*9=27d+216;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式