
急!一道高中数学题,详细解释
已知3sin^2(A)+2sin^2(B)-2sin(A)=0.则y=sin^2(A)+sin^2(B)的最大值为_______答案4/9...
已知3sin^2(A)+2sin^2(B)-2sin(A)=0.则y=sin^2(A)+sin^2(B)的最大值为_______
答案4/9 展开
答案4/9 展开
2个回答
展开全部
解:3sin²A+2sin²B-2sinA=0,则3(sinA-1/3)²=1/3-2sin²B
∵sin²B∈[0,1],则1/3-2sin²B∈[-5/3,1/3]
∵3(sinA-1/3)²≥0,则3(sinA-1/3)²∈[0,1/3],则sinA-1/3∈[-1/3,1/3],则sinA∈[0,2/3]
又∵3sin²A+2sin²B-2sinA=0,即2(sin²A+sin²B)=2sinA-sin²A=1-(sinA-1)²
则y=sin²A+sin²B=1/2-1/2(sinA-1)²∈[0,4/9]
则y的最大值为4/9
∵sin²B∈[0,1],则1/3-2sin²B∈[-5/3,1/3]
∵3(sinA-1/3)²≥0,则3(sinA-1/3)²∈[0,1/3],则sinA-1/3∈[-1/3,1/3],则sinA∈[0,2/3]
又∵3sin²A+2sin²B-2sinA=0,即2(sin²A+sin²B)=2sinA-sin²A=1-(sinA-1)²
则y=sin²A+sin²B=1/2-1/2(sinA-1)²∈[0,4/9]
则y的最大值为4/9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询