【急】实在是搞不懂“圆锥曲线”和"韦达定理"和"设而不求"之间的关系,谁能帮帮我???

首先,我只知道韦达定理在一元二次方程里面的应用,但是圆锥曲线是二元二次啊,怎么用的到韦达定理。我的书上写的一个东西我也是看不懂啊.具体如下:---------------... 首先,我只知道韦达定理在一元二次方程里面的应用,但是圆锥曲线是二元二次啊,怎么用的到韦达定理。 我的书上写的一个东西我也是看不懂啊.具体如下:
-------------------------------------------------------------------------------------------------------
设AB是椭圆x^2/a^2 + y^2/b^2 =1 (a>b>0)的弦,A(x1,y1) B(x2,y2),弦重点M(xo,yo),则 AB的斜率为 -b^2xo/a^2yo

--------------------------------------------------------------------------------------------------------

到底怎么得出来的啊,我就是搞不懂啊!! 请大家帮帮我! 谢谢了!我很急。

顺便说下设而不求的原理。
展开
一数陈州
2010-12-02 · TA获得超过1.6万个赞
知道大有可为答主
回答量:4159
采纳率:85%
帮助的人:1452万
展开全部
圆锥曲线是二次,把直线方程代入消掉一个未知数,就是一元二次。
舍而不求是:设出两个交点坐标,但不求出两个交点坐标,仅用韦达定理标示出x1+x2、x1x2,y1+y2、y1y2的关系式。这就是设而不求。
上题先求出直线方程,代入椭圆方程,得出一个一元二次方程,用韦达定理求出根与系数关系。你好好看看书吧。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
猛刂06
2010-12-02 · TA获得超过576个赞
知道小有建树答主
回答量:70
采纳率:0%
帮助的人:133万
展开全部
首先要声明:韦达定理说明了一元二次方程中根和系数之间的关系,但二元二次方程和维达定理之间并不构成充要条件的。
举个反例:
x^2 + y^2 = 1
2x^2 + 2y^2 = 2
这是一个二元二次方程,但同时也是不定方程组,它没有维达定理所说的性质。

关于圆锥曲线的中点弦的一些特性,它的得到通常使用的是点差法。维达定理的使用是在能使用消元法消去一个未知数时才显得可行。也就是说要先利用消元法将多元方程转化为一元方程后,再使用维达定理。

关于点差法,或称代点相减法。
设出弦的两端点坐标(x1,y1)和(x2,y2),代入圆锥曲线的方程,将得到的两个方程相减,运用平方差公式得[(x1+x2)·(x1-x2)]/(a^2)+[(y1+y2)·(y1-y2)/(b^2]=0 ,将这个式子移项整理,
易得斜率 k = (y1-y2)/(x1-x2) = -(b^2/a^2)*(x1 + x2)/(y1 + y2),
又因为M为AB中点,于是有 yo = (y1 + y2)/2 , xo = (x1 + x2)/2,
所以 k = -b^2xo/a^2yo.

设而不求通常是为了省去不必要的中间过程,这是一种方法,一般讨论一个具有普遍意义的方法时,我们不会问这个方法的原理是什么,而是讨论什么情况下使用这种方法更加有效率,这个方法具有怎样的特点等。
点差法是设而不求方法的一种具体的体现,多做题将会积累这方面的经验。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式