线性代数相似对角化的问题 10

已知的情况是,1,如果一个n阶矩阵存在n个不为零的特征值,则其行列式值一定不为零,也就是说,其逆矩阵存在,2,如果一个n阶矩阵存在n个不为零的特征值,但是可能会有这样的情... 已知的情况是,1,如果一个n阶矩阵存在n个不为零的特征值,则其行列式值一定不为零,也就是说,其逆矩阵存在,
2,如果一个n阶矩阵存在n个不为零的特征值,但是可能会有这样的情况,如果矩阵存在r个相等的非零特征值,此特征值对应的特征向量个数小于r,则就不存在这样的矩阵p使得矩阵a相似对角化,当然也就不能相似于单位矩阵,既该矩阵不存在逆矩阵,也就是该矩阵行列式值为0!!
请问困难在何处,有点乱了。
二楼可否说得再明白一些,比如你所提到的相似,等价,可逆之间的联系区别?我所知道的,好像秩相等就等等价
展开
funintears
2010-12-15 · TA获得超过317个赞
知道答主
回答量:64
采纳率:0%
帮助的人:75.8万
展开全部

感觉你想从特征值的角度来讨论矩阵可逆,以及矩阵相似对角化的问题。作以下回答:

首先,n阶矩阵在复数域上一定存在n个特征值(可能有重复)。所以不用为是否有n个特征值烦恼。

其次,n阶矩阵行列式等于所有n个特征值的乘积。因此,如果存在n个不为零的特征值,那么矩阵一定可逆。

再次,你上面分析问题如下:确实矩阵特征值可能存在相等情况,但是并不代表此时线性无关的特征向量少于n个,存在这种情况:一个特征值对应多个特征向量。退一步,即使线性无关的特征向量少于n个,也就是说矩阵不可对角化,但是这与矩阵是否存在逆矩阵完全没有关系。如图的矩阵他是可逆(行列式不等于0),但是他不可对角化

百度网友2886d670c
2010-12-02 · 超过23用户采纳过TA的回答
知道答主
回答量:52
采纳率:0%
帮助的人:64.4万
展开全部
重点是不相似于单位矩阵,并不说明不和单位矩阵等价.所以不能说他不可逆。
你模糊了两者之间的关系!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式