请帮忙证明一下柯西极限存在准则,谢谢!

ksdjksdj
2010-12-02 · TA获得超过359个赞
知道小有建树答主
回答量:74
采纳率:0%
帮助的人:82.3万
展开全部
我证一下数列的吧。函数的可以仿证。
柯西准则:
数列收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>N,n>N时就有|Xn-Xm|<ε
证明:
(1)充分性:依条件知:对于一给定的ε>0,存在正整数k,使得任意m>N,都有:
|X(k+1)-Xm|<ε,即X(k+1)-ε<Xm<X(k+1)+ε
即足项后数列有界,Xk前只有有限项,可知该数列一定有界。
由维尔斯特拉斯紧性原理知,该数列一定存在收敛子列。设该子列{Xkl}收敛于A,
那么由极限定义:对于任意ε>0,都存在正整数L,使得任意的kl>L,都有:
|Xkl-A|<ε,即 -ε<Xkl-A<ε (1)
又根据条件知,存在正整数M,使得任意的m>M,都有:
|Xkl-Xm|<ε,即 -ε<Xm-Xkl<ε (2)
(1)+(2)就有:
对于任意给定的ε,都存在正整数N=max{L,M},使得任意的m>N,都有:
-2ε<Xm-A<2ε
即足项后数列的任意项与A的距离可以小于任意正数,即该数列收敛于A。
(2)必要性:
已知Xn收敛于A,即对任意ε>0,都存在正整数N,使得任意m1>N,m2>N,都有:
-ε<Xm1-A<ε
-ε<A-Xm2<ε
两式相加就是:
|Xm1-Xm2|<2ε
证毕。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式