齿轮公式中inv(a)怎么计算?
4个回答
展开全部
答案是:invα=tgα-α
圆柱齿轮角变位计算中,invα的计算表示渐开线函数 的计算。invα=tgα-α ,等号右边第一项的 α是角度值, 而第二项的α是弧度值。
拓展资料:
一般的,渐开线指“圆的渐开线”。一条直线在一个圆上作无滑动的滚动时,直线上一定点运动的轨迹称为“圆的渐开线”,而称该圆为渐开线的“基圆”,直线为渐开线的“发生线”,如图2所示。即若在圆周绕有无弹性的细绳,且保持这个圆固定不动,而将细绳拉紧并逐渐展开,,让该线绕圆轴运动且始终与圆轴相切,那么线上一个定点在该平面上的轨迹就是渐开线。
佛山市南海永坤精密机电有限公司
2021-10-11 广告
2021-10-11 广告
在传动功率、扭矩相同时,斜齿轮的减速机的体积、重量会更小。因为,斜齿轮的齿数比直齿轮的齿数少;斜齿轮的重合系数比直齿轮的大(斜齿轮比直齿轮多出轴面重合系数)、可以选取更小的模数。详细可以咨询台湾永坤齿轮减速机。1.永坤电机齿轮减速机行业技术...
点击进入详情页
本回答由佛山市南海永坤精密机电有限公司提供
展开全部
invα就是渐开线函数,就是渐开线上那一点的展开角(弧度)。
invα=tanα-α 后面那个α要用弧度值。 α就是渐开线上那一点的压力角。
invα=tanα-α 后面那个α要用弧度值。 α就是渐开线上那一点的压力角。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
渐开线函数,invα=tanα-α 后面那个α要用弧度值。 α就是渐开线上那一点的压力角。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部

det

科普中国
本词条由“科普中国”科学百科词条编写与应用工作项目审核
贡献者徐恒山详情
det是一个计算机函数,在FreeMat、Matlab中,该函数用于求一个方阵(square matrix)的行列式(Determinant)。
中文名
方阵函数
外文名
det
功能
求一个方阵的行列式
类型
计算机函数
函数简介
语法格式
(1)功能:det为矩阵的行列式值。det计算某一方阵(行列相等的二维数组)的对应行列式值每一矩阼都有一个对应的行列式。行列式是对矩阵表按一定规则进行运算之后所得到的一个数值。行列式可以确定出对应矩阵是否存在着逆,即确定矩阵的奇异性,可以用来解线性方程组等。当行列式为0或近似于0时,其对应逆矩阵不存在,或虽然存在,但计算机计算出来的结果不正确。[1]
(2)语法:d = det(X)
返回方阵X的行列式值。如果X仅包含一个整数元素,返回的结果d也是一个整数。
(3)解析:将der(X)==0作为对矩阵奇异性的测试仅适合具有阶和较小整数元素的矩阵。使用abs(det(X))<=tolerance作为检测矩阵奇异性的方法同样也不是推荐方法,原因在于正确选择的容差tolerance非常困难。函数cond(X)则可以检查奇异或者接近奇异的矩阵。[2]
(4)算法:行列式的值是通过高斯消元法得到三角矩阵的系数得到的。
[L,U]=lu(A)
s= det(L) %这一值总为+1l或-1
det(A)=s*prod(diag(U))
(5)应用实例
语句A=[1 2 3;45 6;7 8 9]得到
该矩阵恰好是一个奇异矩阵,所以d=det(A)的结果为d=0。将元素A(3,3)改变为A(3,3)=0可以将A变为一个非奇异的矩阵。则d=det(A)的结果为d=27。
(5)详解
在FreeMat中,一个方阵的行列式是通过LU分解计算得到的。需要注意的是,若干个矩阵相乘得到的矩阵的行列式等于这些矩阵的行列式相乘。于是,我们得到:
LU=PA
这里L是一个对角线上元素全为1的下三角矩阵(lower triangular),U是一个上三角矩阵(upper triangular),P是一个行置换矩阵(row-permutation matrix):
|LU|=|L||U|=|U|=|PA|=|P||A|
这里我们应用了L的行列式为1这个结论。P的行列式为1或-1。
所谓置换矩阵,是指交换一个n*n的单位矩阵的两行得到的矩阵(在线性代数中,这种操作叫做矩阵的初等变换)。置换矩阵的每行/列都只有一个1,其余元素全为0。
相关函数
rank,inv
程序示例
在FreeMat中的示例:
--> A = [0 0 0; 1 2 3; 4 5 6];
--> det(A)
ans =
0
--> B = [1 2; 3 4];
--> det(B)
ans =
-2
性质
性质1:如果(a,b)=(1,0),(c,d)=(0,1)则平行四边形变成正方形,面积=1,A为单位阵,即

性质1
性质2:若A有相同的两行,则det(A)=0.
看一个极端情况,如果(a,b)=(c,d),即向量(a,b)与(c,d)重合,面积肯定为0。
det

科普中国
本词条由“科普中国”科学百科词条编写与应用工作项目审核
贡献者徐恒山详情
det是一个计算机函数,在FreeMat、Matlab中,该函数用于求一个方阵(square matrix)的行列式(Determinant)。
中文名
方阵函数
外文名
det
功能
求一个方阵的行列式
类型
计算机函数
函数简介
语法格式
(1)功能:det为矩阵的行列式值。det计算某一方阵(行列相等的二维数组)的对应行列式值每一矩阼都有一个对应的行列式。行列式是对矩阵表按一定规则进行运算之后所得到的一个数值。行列式可以确定出对应矩阵是否存在着逆,即确定矩阵的奇异性,可以用来解线性方程组等。当行列式为0或近似于0时,其对应逆矩阵不存在,或虽然存在,但计算机计算出来的结果不正确。[1]
(2)语法:d = det(X)
返回方阵X的行列式值。如果X仅包含一个整数元素,返回的结果d也是一个整数。
(3)解析:将der(X)==0作为对矩阵奇异性的测试仅适合具有阶和较小整数元素的矩阵。使用abs(det(X))<=tolerance作为检测矩阵奇异性的方法同样也不是推荐方法,原因在于正确选择的容差tolerance非常困难。函数cond(X)则可以检查奇异或者接近奇异的矩阵。[2]
(4)算法:行列式的值是通过高斯消元法得到三角矩阵的系数得到的。
[L,U]=lu(A)
s= det(L) %这一值总为+1l或-1
det(A)=s*prod(diag(U))
(5)应用实例
语句A=[1 2 3;45 6;7 8 9]得到
该矩阵恰好是一个奇异矩阵,所以d=det(A)的结果为d=0。将元素A(3,3)改变为A(3,3)=0可以将A变为一个非奇异的矩阵。则d=det(A)的结果为d=27。
(5)详解
在FreeMat中,一个方阵的行列式是通过LU分解计算得到的。需要注意的是,若干个矩阵相乘得到的矩阵的行列式等于这些矩阵的行列式相乘。于是,我们得到:
LU=PA
这里L是一个对角线上元素全为1的下三角矩阵(lower triangular),U是一个上三角矩阵(upper triangular),P是一个行置换矩阵(row-permutation matrix):
|LU|=|L||U|=|U|=|PA|=|P||A|
这里我们应用了L的行列式为1这个结论。P的行列式为1或-1。
所谓置换矩阵,是指交换一个n*n的单位矩阵的两行得到的矩阵(在线性代数中,这种操作叫做矩阵的初等变换)。置换矩阵的每行/列都只有一个1,其余元素全为0。
相关函数
rank,inv
程序示例
在FreeMat中的示例:
--> A = [0 0 0; 1 2 3; 4 5 6];
--> det(A)
ans =
0
--> B = [1 2; 3 4];
--> det(B)
ans =
-2
性质
性质1:如果(a,b)=(1,0),(c,d)=(0,1)则平行四边形变成正方形,面积=1,A为单位阵,即

性质1
性质2:若A有相同的两行,则det(A)=0.
看一个极端情况,如果(a,b)=(c,d),即向量(a,b)与(c,d)重合,面积肯定为0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询