已知三角形ABC的三个内角A.B.C对应的边长分别为a.b.c向量,向量m=(sinB,1-cosB)与向量n=(2,0)夹角阿法的余

已知三角形ABC的三个内角A.B.C对应的边长分别为a.b.c向量,向量m=(sinB,1-cosB)与向量n=(2,0)夹角阿法的余弦值1/2,求角B的大小,若三角形A... 已知三角形ABC的三个内角A.B.C对应的边长分别为a.b.c向量,向量m=(sinB,1-cosB)与向量n=(2,0)夹角阿法的余弦值1/2,求角B的大小,若三角形ABC外接圆半径为1,求a+c的范围 帮帮 展开
fnxnmn
2010-12-03 · TA获得超过5.8万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6449万
展开全部
向量m=(sinB,1-cosB),向量n=(2,0),
m•n=2sinB,
|m|=√(sin²B+(1-cosB) ²)=√(2-2 cosB)= √[2(1- cosB)]= √[2•2sin²(B/2)]=2 sin(B/2).
|n|=2
所以Cosα=m•n/(|m||n|)=2sinB/[4 sin(B/2)]= 4 sin(B/2)cos(B/2) /[4 sin(B/2)]= cos(B/2).
由已知:Cosα=1/2,
∴cos(B/2) =1/2,B/2 =π/3. B=2π/3.

由正弦定理得a/sinA=b/sinB=c/sinC=2R=2.
所以(a +c )/(sinA +sinC)=2
a +c=2(sinA +sinC)
∵B=2π/3. A +C=π/3.
∴a +c=2(sinA +sin(π/3-A))=2(sinA +√3/2cosA-1/2sinA)
=2(1/2sinA +√3/2cosA)=2sin (A+π/3)
因为0<A<π/3, π/3<A+π/3<2π/3.
所以√3/2<sin (A+π/3)≤1
a +c==2sin (A+π/3)∈(√3,2].
来自:求助得到的回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式