大O表示法的例子
首先看一个简单的示例:
⑴ int num1,num2;
⑵ for(int i=0; i<n; i++){
⑶ num1 += 1;
⑷ for(int j=1; j<=n; j =2){
⑸ num2 += num1;
⑹ }
⑺ }
分析:
⒈
语句int num1,num2;的频度为1;
语句i=0;的频度为1;
语句i<n; i++; num1+=1; j=1; 的频度为n;
语句j<=n;j =2; num2+=num1;的频度为n n;
T(n) = 2 + 4n +3n n
⒉
忽略掉T(n)中的常量、低次幂和最高次幂的系数
f(n) = n*n
⒊
lim(T(n)/f(n)) = (2+4n+3n*n) / (n*n)
= 2*(1/n)*(1/n) + 4*(1/n) + 3
当n趋向于无穷大,1/n趋向于0,1/n趋向于0
所以极限等于3。
T(n) = O(n*n)
简化的计算步骤
再来分析一下,可以看出,决定算法复杂度的是执行次数最多的语句,这里是num2 += num1,一般也是最内循环的语句。
并且,通常将求解极限是否为常量也省略掉?
于是,以上步骤可以简化为:
⒈ 找到执行次数最多的语句
⒉ 计算语句执行次数的数量级
⒊ 用大O来表示结果
继续以上述算法为例,进行分析:
⒈
执行次数最多的语句为num2 += num1
⒉
T(n) = n*log2n
f(n) = n*log2n
⒊
// lim(T(n)/f(n)) = 1
T(n) = O(n*log2n)
--------------------------------------------------------------------------------
一些补充说明
最坏时间复杂度
算法的时间复杂度不仅与语句频度有关,还与问题规模及输入实例中各元素的取值有关。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。这就保证了算法的运行时间不会比任何更长。
求数量级
即求对数值(log),默认底数为10,简单来说就是“一个数用标准科学计数法表示后,10的指数”。例如,5000=5x10 3 (log5000=3) ,数量级为3。另外,一个未知数的数量级为其最接近的数量级,即最大可能的数量级。
求极限的技巧
要利用好1/n。当n趋于无穷大时,1/n趋向于0
--------------------------------------------------------------------------------
一些规则(引自:时间复杂度计算)
1) 加法规则
T(n,m) = T1(n) + T2(n) = O (max (f(n),g(m))
2) 乘法规则
T(n,m) = T1(n) * T2(m) = O (f(n) * g(m))
3) 一个特例(问题规模为常量的时间复杂度)
在大O表示法里面有一个特例,如果T1(n) = O(c), c是一个与n无关的任意常数,T2(n) = O (f(n)) 则有
T(n) = T1(n) * T2(n) = O (c*f(n)) = O(f(n))
也就是说,在大O表示法中,任何非0正常数都属于同一数量级,记为O⑴。
4) 一个经验规则
复杂度与时间效率的关系:
c < log2n < n < n*log2n < n2 < n3 < 2n < 3n < n! (c是一个常量)
|--------------------------|--------------------------|-------------|
较好 一般 较差
其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n*log2n,那么这个算法时间效率比较高 ,如果是 2n,3n,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。
--------------------------------------------------------------------------------------------------
复杂情况的分析
以上都是对于单个嵌套循环的情况进行分析,但实际上还可能有其他的情况,下面将例举说明。
⒈并列循环的复杂度分析
将各个嵌套循环的时间复杂度相加。
例如:
for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;
解:
第一个for循环
T(n) = n
f(n) = n
时间复杂度为Ο(n)
第二个for循环
T(n) = n2
f(n) = n2
时间复杂度为Ο(n2)
整个算法的时间复杂度为Ο(n+n2) = Ο(n2)。
⒉函数调用的复杂度分析
例如:
public void printsum(int count){
int sum = 1;
for(int i= 0; i<n; i++){
sum += i;
}
System.out.print(sum);
}
分析:
记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O⑴。
所以printsum的时间复杂度 = for的O(n)+O⑴ = 忽略常量 = O(n)
*这里其实可以运用公式 num = n*(n+1)/2,对算法进行优化,改为:
public void printsum(int count){
int sum = 1;
sum = count * (count+1)/2;
System.out.print(sum);
}
这样算法的时间复杂度将由原来的O(n)降为O⑴,大大地提高了算法的性能。
⒊混合情况(多个方法调用与循环)的复杂度分析
例如:
public void suixiangMethod(int n){
printsum(n);//1.1
for(int i= 0; i<n; i++){
printsum(n); //1.2
}
for(int i= 0; i<n; i++){
for(int k=0; k<n;k++){
System.out.print(i,k); //1.3
}
}
suixiangMethod 方法的时间复杂度需要计算方法体的各个成员的复杂度。
也就是1.1+1.2+1.3 = O⑴+O(n)+O(n2) ----> 忽略常数 和 非主要项 == O(n2)
--------------------------------------------------------------------------------------------------
更多的例子
O⑴
交换i和j的内容
temp=i;
i=j;
j=temp;
以上三条单个语句的频度为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O⑴。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O⑴。
O(n2)
sum=0; /* 执行次数1 */
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
sum++; /* 执行次数n2 */
解:T(n) = 1 + n2 = O(n2)
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解:语句1的频度是n-1
语句2的频度是(n-1)*(2n+1) = 2n2-n-1
T(n) = 2n2-n-1+(n-1) = 2n2-2
f(n) = n2
lim(T(n)/f(n)) = 2 + 2*(1/n2) = 2
T(n) = O(n2).
O(n)
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b; ③
b=a; ④
a=s; ⑤
}
解:语句1的频度:2,
语句2的频度:n,
语句3的频度:n,
语句4的频度:n,
语句5的频度:n,
T(n) = 2+4n
f(n) = n
lim(T(n)/f(n)) = 2*(1/n) + 4 = 4
T(n) = O(n).
O(log2n)
i=1; ①
while (i<=n)
i=i*2; ②
解:语句1的频度是1,
设语句2的频度是t,则:2^t<=n; t<=log2n
考虑最坏情况,取最大值t=log2n,
T(n) = 1 + log2n
f(n) = log2n
lim(T(n)/f(n)) = 1/log2n + 1 = 1
T(n) = O(log2n)
O(n3)
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:当i=m,j=k的时候,内层循环的次数为k当i=m时,j 可以取 0,1,...,m-1,所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n,则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/2次
T(n) = n(n+1)(n-1)/2 = (n3-n)/2
f(n) = n3
所以时间复杂度为O(n3)。