已知sinθ+cosθ=2sinα,sinθ·cosθ=sin²β,求证:2cos2α=cos2β.
展开全部
解:∵sinθ+cosθ=2sinα
∴(sinθ+cosθ)²=(2sinα)²
==>sin²θ+cos²θ+2sinθ*cosθ=4sin²α
==>1+2sinθ*cosθ=4sin²α
∵sinθ·cosθ=sin²β
∴1+2sin²β=4sin²α
==>1+1-cos(2β)=2(1-cos(2α))
==>2-cos(2β)=2-2cos(2α)
==>-cos(2β)=-2cos(2α)
==>2cos(2α)=cos(2β)
故原命题成立,证毕。
∴(sinθ+cosθ)²=(2sinα)²
==>sin²θ+cos²θ+2sinθ*cosθ=4sin²α
==>1+2sinθ*cosθ=4sin²α
∵sinθ·cosθ=sin²β
∴1+2sin²β=4sin²α
==>1+1-cos(2β)=2(1-cos(2α))
==>2-cos(2β)=2-2cos(2α)
==>-cos(2β)=-2cos(2α)
==>2cos(2α)=cos(2β)
故原命题成立,证毕。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询