
某车间每天可以生产甲种零件500只,或乙种零件600只,或丙种零件750只,甲,乙,丙三种
某车间每天可以生产甲种零件500只,或乙种零件600只,或丙种零件750只,甲,乙,丙三种零件各一个配成一套,现在要在30天内生产最多的成套产品,甲,乙,丙三种零件各生产...
某车间每天可以生产甲种零件500只,或乙种零件600只,或丙种零件750只,甲,乙,丙三种零件各一个配成一套,现在要在30天内生产最多的成套产品,甲,乙,丙三种零件各生产多少天?用一元一次方程解答。要过程。谢了
展开
展开全部
解:假设30天内最多生产X套产品,则有:
X/500+X/600+X/750=30
则X=6000
所以甲生产6000/500=12(天)乙生产6000/600=10(天)丙生产6000/750=8(天)
X/500+X/600+X/750=30
则X=6000
所以甲生产6000/500=12(天)乙生产6000/600=10(天)丙生产6000/750=8(天)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询