无穷数级∑ 收敛

我想问下到底无穷数级∑an怎么样才算收敛,我看定义一会说是lim(an)=0的时候收敛,一会又说有极限的时候收敛。。。我都搞不懂怎么去判定是不是收敛的了。。。那是不是有“... 我想问下到底无穷数级∑an怎么样才算收敛,我看定义一会说是lim(an)=0的时候收敛,一会又说有极限的时候收敛。。。我都搞不懂怎么去判定是不是收敛的了。。。
那是不是有
“如果级数收敛,则它的一般项极限为零。
或者如果级数的一般项不为零,则该级数必定发散。”这说法?
他这个一般项是不是就是指数列an,所以我们在算的时候如果an是趋于0的,也就是说∑an收敛?而∑an的极限是要单独再算的?
展开
贡圣5B
2010-12-04 · TA获得超过1097个赞
知道小有建树答主
回答量:206
采纳率:0%
帮助的人:339万
展开全部
lim(an)=0不能判断无穷级数∑an收敛,例如∑(1/n),lim(1/n)n趋近于无穷大=0,但∑(1/n)并不收敛,若要证明一个级数收敛,必须证明它的前n项和在n趋近于无穷大时有界。或者根据级数的性质证明这个级数小于某个收敛的级数,比如∑(1/n²)

关于你的补充:
前面一半是正确的:级数收敛,一般项极限为零,级数的一般项极限不为零,则级数一定发散,一般项极限为零时级数收敛的必要条件,而不是充分条件,这个一般项就是所谓的an
后面一半不正确:an趋于零只是级数收敛的必要条件,必须证明∑an有界,才能证明an级数收敛,我上面举的例子是(1/n)级数不收敛,尽管(1/n)在n趋于无穷大时极限为零,下面我给出简单的证明:
∑(1/n)=1+1/2+1/3+1/4+1/5+...+1/n+...
=1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)+...+{1/[2^(k)+1]+...+1/[2^(k+1)]}+...
>1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+...+(2^k)/[2^(k+1)]+...
=1+1/2+1/2+1/2+...+1/2+...
随着n的增长,这个无穷级数将累加无数的1/2所以∑(1/n)是无界的,也就是说(1/n)这个级数不收敛
(注:1/n级数又称调和级数Harmonic Series,这个数的前n项和没有简单数学表达式,被表示为ln(n)+Harmonic Number,这个Harmonic Number不是一个定常数是ln(n)与∑(1/n)的差,n趋于无穷大时,这个数大概为5.77左右,但显而易见,ln(n)是无界的,尽管他的导数越来越小)。

另外,可以证明∑(1/n²) 是收敛的,因为∑(1/n²) 的上界为π²/6,没有简单的数学表达式,可以通过傅里叶变换等方法证明,如果想研究可以搜索Basel Problem

总之,记住一条,证明级数收敛一定要证明级数前n项和的极限有界,这是最根本的定义,证明的方法有很多,但原则上是这样的。

有问题还可以再补充,或者直接给我留言
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式