已知f(x)=2^x可以表示成一个奇函数g(x)和一个偶函数h(x)的和
已知f(x)=2^x可以表示成一个奇函数g(x)和一个偶函数h(x)的和,若关于x的不等式ag(x)+h(2x)>=0对于x属于[1,2]恒成立,求实数a是最小值过程最好...
已知f(x)=2^x可以表示成一个奇函数g(x)和一个偶函数h(x)的和,若关于x的不等式ag(x)+h(2x)>=0对于x属于[1,2]恒成立,求实数a是最小值
过程最好详细点,谢谢!!!!!!! 展开
过程最好详细点,谢谢!!!!!!! 展开
展开全部
解:
依题意,g(x)+h(x)=2^x......(1)
∵g(x)是奇函数,∴g(-x)=-g(x)
∵h(x)是偶函数,∴h(-x)=h(x)
∴g(-x)+h(-x)=h(x)-g(x)=2^(-x)......(2)
(1)式和(2)式相加,得2h(x)=2^x+2^(-x),即h(x)=[2^x+2^(-x)]/2
代入(1)得,g(x)=2^x-h(x)=[2^x-2^(-x)]/2
∴ag(x)+h(2x)=a[2^x-2^(-x)]/2+[2^(2x)+2^(-2x)]/2≥0在x∈[1,2]恒成立
∴a[2^x-2^(-x)]+[2^(2x)+2^(-2x)]≥0在x∈[1,2]恒成立
令t=2^x,∴2^(-x)=1/t,当x∈[1,2]时,t∈[2,4]
∴原不等式化为a(t-1/t)+(t^2+1/t^2)≥0在t∈[2,4]上恒成立
由不等式a(t-1/t)+(t^2+1/t^2)≥0,可得a(t-1/t)≥-(t^2+1/t^2)
∵当t∈[2,4]时,t-1/t>0恒成立
∴a≥-(t^2+1/t^2)/(t-1/t)=[-(t^2+1/t^2-2)-2]/(t-1/t)
=[-(t-1/t)^2-2]/(t-1/t)=-(t-1/t)-2/(t-1/t)
即a≥-[(t-1/t)+2/(t-1/t)]在t∈[2,4]上恒成立
即a要大于等于-[(t-1/t)+2/(t-1/t)]在t∈[2,4]上的最大值
令u=t-1/t,求导得u`=1+1/t^2>0恒成立,∴u=t-1/t在t∈[2,4]上单调递增
∴u∈[3/2,15/4]
令f(u)=u+2/u u∈[3/2,15/4]
求导得f`(u)=1-2/u^2>0在u∈[3/2,15/4]上恒成立
∴f(u)在u∈[3/2,15/4]上单调递增
即当u=3/2,f(u)取最小值f(3/2)=17/6
当u=3/2时,可解得t=2(另一根不在t∈[2,4]内故舍去)
∴当t=2时,(t-1/t)+2/(t-1/t)取最小值为17/6
即-[(t-1/t)+2/(t-1/t)]取最大值为-17/6
∴a≥-17/6当t=2,即x=1时取等号
∴a的最小值为-17/6
本题也可以在a(t-1/t)+(t^2+1/t^2)≥0时,通过换元u=t-1/t讲不等式转化为二次不等式u^2+au+2≥0,然后再去讨论。
(1)当对阵轴在(3/2,15/4)内时,有3/2<a/2<15/4,即3<a<15/2
∵u^2+au+2≥0在u∈[3/2,15/4]上恒成立
∴△=a^2-8≤0,解得-2根号2≤a≤2根号2,不在(3,15/2)内,舍去
(2)当对阵轴不在(3/2,15/4)内时,显然二次函数y=u^2+au+2在区间[3/2,15/4]上是单调的,a≥15/2或a≤3
∴要使得u^2+au+2≥0在u∈[3/2,15/4]上恒成立,
只需将3/2和15/4代入后,u^2+au+2的值大于等于0
即(3/2)^2+a(3/2)+2≥0且(15/4)^2+a(15/4)+2≥0
解得,a≥-17/6
即a∈[-17/6,3]∪[15/2,+∞)
∴a的最小值为-17/6
祝你学习愉快~
依题意,g(x)+h(x)=2^x......(1)
∵g(x)是奇函数,∴g(-x)=-g(x)
∵h(x)是偶函数,∴h(-x)=h(x)
∴g(-x)+h(-x)=h(x)-g(x)=2^(-x)......(2)
(1)式和(2)式相加,得2h(x)=2^x+2^(-x),即h(x)=[2^x+2^(-x)]/2
代入(1)得,g(x)=2^x-h(x)=[2^x-2^(-x)]/2
∴ag(x)+h(2x)=a[2^x-2^(-x)]/2+[2^(2x)+2^(-2x)]/2≥0在x∈[1,2]恒成立
∴a[2^x-2^(-x)]+[2^(2x)+2^(-2x)]≥0在x∈[1,2]恒成立
令t=2^x,∴2^(-x)=1/t,当x∈[1,2]时,t∈[2,4]
∴原不等式化为a(t-1/t)+(t^2+1/t^2)≥0在t∈[2,4]上恒成立
由不等式a(t-1/t)+(t^2+1/t^2)≥0,可得a(t-1/t)≥-(t^2+1/t^2)
∵当t∈[2,4]时,t-1/t>0恒成立
∴a≥-(t^2+1/t^2)/(t-1/t)=[-(t^2+1/t^2-2)-2]/(t-1/t)
=[-(t-1/t)^2-2]/(t-1/t)=-(t-1/t)-2/(t-1/t)
即a≥-[(t-1/t)+2/(t-1/t)]在t∈[2,4]上恒成立
即a要大于等于-[(t-1/t)+2/(t-1/t)]在t∈[2,4]上的最大值
令u=t-1/t,求导得u`=1+1/t^2>0恒成立,∴u=t-1/t在t∈[2,4]上单调递增
∴u∈[3/2,15/4]
令f(u)=u+2/u u∈[3/2,15/4]
求导得f`(u)=1-2/u^2>0在u∈[3/2,15/4]上恒成立
∴f(u)在u∈[3/2,15/4]上单调递增
即当u=3/2,f(u)取最小值f(3/2)=17/6
当u=3/2时,可解得t=2(另一根不在t∈[2,4]内故舍去)
∴当t=2时,(t-1/t)+2/(t-1/t)取最小值为17/6
即-[(t-1/t)+2/(t-1/t)]取最大值为-17/6
∴a≥-17/6当t=2,即x=1时取等号
∴a的最小值为-17/6
本题也可以在a(t-1/t)+(t^2+1/t^2)≥0时,通过换元u=t-1/t讲不等式转化为二次不等式u^2+au+2≥0,然后再去讨论。
(1)当对阵轴在(3/2,15/4)内时,有3/2<a/2<15/4,即3<a<15/2
∵u^2+au+2≥0在u∈[3/2,15/4]上恒成立
∴△=a^2-8≤0,解得-2根号2≤a≤2根号2,不在(3,15/2)内,舍去
(2)当对阵轴不在(3/2,15/4)内时,显然二次函数y=u^2+au+2在区间[3/2,15/4]上是单调的,a≥15/2或a≤3
∴要使得u^2+au+2≥0在u∈[3/2,15/4]上恒成立,
只需将3/2和15/4代入后,u^2+au+2的值大于等于0
即(3/2)^2+a(3/2)+2≥0且(15/4)^2+a(15/4)+2≥0
解得,a≥-17/6
即a∈[-17/6,3]∪[15/2,+∞)
∴a的最小值为-17/6
祝你学习愉快~
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询