如何驱动双向可控硅使其控制电源通断
双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。过零触发是指在电压为零或零附近的瞬间接通。由于采用过零触发,因此上述电路还需要正弦交流电过零检测电路。
1 过零检测电路
电路设计如图1 所示,为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中BT 为变压器,TPL521 - 2 为光电耦合器,起隔离作用。当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51 的外部中断0 的输入引脚,以引起中断。在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。过零检测电路A、B 两点电压输出波形如图2 所示。
2 过零触发电路
电路如图3 所示,图中MOC3061 为光电耦合双向可控硅驱动器,也属于光电耦合器的一种,用来驱动双向可控硅BCR 并且起到隔离的作用,R6 为触发限流电阻,R7 为BCR 门极电阻,防止误触发,提高抗干扰能力。当单片机80C51 的P1. 0 引脚输出负脉冲信号时T2 导通,MOC3061 导通,触发BCR 导通,接通交流负载。另外,若双向可控硅接感性交流负载时,由于电源电压超前负载电流一个相位角,因此,当负载电流为零时,电源电压为反向电压,加上感性负载自感电动势el 作用,使得双向可控硅承受的电压值远远超过电源电压。虽然双向可控硅反向导通,但容易击穿,故必须使双向可控硅能承受这种反向电压。一般在双向可控硅两极间并联一个RC阻容吸收电路,实现双向可控硅过电压保护,图3 中的C2 、R8 为RC 阻容吸收电路。
原理简介:
1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成。当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
2,由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,条件如下:
A、从关断到导通1、阳极电位高于是阴极电位,2、控制极有足够的正向电压和电流,两者缺一不可。
B、维持导通1、阳极电位高于阴极电位,2、阳极电流大于维持电流,两者缺一不可。
C、从导通到关断1、阳极电位低于阴极电位,2、阳极电流小于维持电流,任一条件即可。
再一个是用5V电源串一电阻驱动一个3081光耦,再接可控硅,或只买一个固态继电器就行了。
你这里有"可控硅"和"双向可控硅"两种提法,不知就是同一个双向可控硅还是一个双向可控硅和另一个可控硅(应该是单向),如果是前者,我的回答是对的,电路也方便。如果是后者就不这么简单,电路要复杂些,但为什么要用可控硅和双向可控硅转来转去呢?就一个双向可控硅肯定是可以的.