数列问题
设数列{an}的前n项和为Sn,A1=1,且对任意正整数n,点(An+1,,Sn)在直线2x+y-2=0上。问是否存在实数P,使得数列{Sn+P*n+P/2∧n}为等差数...
设数列{an}的前n项和为Sn,A1=1,且对任意正整数n,点(An+1,,Sn)在直线2x+y-2=0上。问是否存在实数P,使得数列{Sn+P*n+P/2∧n}为等差数列?若存在,求出P的值;若不存在,则说明理由
展开
2010-12-04
展开全部
点(An+1,,Sn)在直线2x+y-2=0上,表明Sn=y=2-2x=2-2An+1
S1=A1=1=2-2A2, A2=1/2
S2=A1+A2=3/2=2-2A3, A3=1/4
以此类推,A4=1/8, A5=1/16, ...An=1/2^(n-1)
Sn为等比数列,其通项为 Sn=2-2/2^n
Sn+P*n+P/2∧n=2-2/2^n+Pn+P/2^n, 要使该数列为等差数列,需消去1/2^n项,即 P=2, 此时该数列为 2+2n,是等差数列
S1=A1=1=2-2A2, A2=1/2
S2=A1+A2=3/2=2-2A3, A3=1/4
以此类推,A4=1/8, A5=1/16, ...An=1/2^(n-1)
Sn为等比数列,其通项为 Sn=2-2/2^n
Sn+P*n+P/2∧n=2-2/2^n+Pn+P/2^n, 要使该数列为等差数列,需消去1/2^n项,即 P=2, 此时该数列为 2+2n,是等差数列
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询