关于线性变换可逆的证明题

设ε1,ε2,…,ε3是线性空间V的一组基,σ是V上的线性变换,证明σ可逆当且仅当σε1,σε2,…,σε3线性无关。... 设ε1,ε2,…,ε3是线性空间V的一组基,σ是V上的线性变换,证明σ可逆当且仅当σε1,σε2,…,σε3线性无关。 展开
覃知道
2010-12-04
知道答主
回答量:15
采纳率:0%
帮助的人:0
展开全部
设k1σε1+k2σε2+k3σε3=0
必要性.
k1σε1+k2σε2+k3σε3=0
σ(k1ε1+k2ε2+k3ε3)=0
两边作逆变换,得
k1ε1+k2ε2+k3ε3=0
从而,k1=k2=k3.
充分性.
因σε1,σε2,σε3线性无关
故是V的一组基
从而存在一个线性变换μ使得,
μ(σε1)=ε1,μ(σε2)=ε2,μ(σε3)=ε3
由可逆变换的定义知道,μ为σ逆变换.
这个结果可以推广到n维线性空间上面去.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式