
高2选修2.1第3章向量题
设空间两个单位向量OA=(m,n,0),OB=(0,n,p)与向量OC=(1,1,1)的夹角都等于π/4,求cos∠AOB的值。(请给个详细过程,谢谢)貌似有2个答案的。...
设空间两个单位向量OA=(m,n,0),OB=(0,n,p)与向量OC=(1,1,1)的夹角都等于π/4,求cos∠AOB的值。(请给个详细过程,谢谢)
貌似有2个答案的。。。 展开
貌似有2个答案的。。。 展开
1个回答
展开全部
前边解错了
因为都是单位向量,
∴m²+n²=n²+p²
∴│m│=│p│
cosAOC=OA·OC/(│OA│·│OC│)=(m+n)/1=√2/2
同理 n+p=√2/2
∵m²+n²=1
m+n=√2/2
∴n²+(√2/2-n)²=1
2n²-√2n-1/2=0
n=(√2±√6)/4
n=(√2+√6)/4时,m=p=(√2-√6)/4
cosAOB=(OA·OB)/(│OA│·│OB│)=n²/1=((√2-√6)/4)²=(2-√3)/4
n=(√2+√6)/4时,m=p=(√2+√6)/4
cosAOB=(OA·OB)/(│OA│·│OB│)=n²/1=((√2+√6)/4)²=(2+√3)/4
因为都是单位向量,
∴m²+n²=n²+p²
∴│m│=│p│
cosAOC=OA·OC/(│OA│·│OC│)=(m+n)/1=√2/2
同理 n+p=√2/2
∵m²+n²=1
m+n=√2/2
∴n²+(√2/2-n)²=1
2n²-√2n-1/2=0
n=(√2±√6)/4
n=(√2+√6)/4时,m=p=(√2-√6)/4
cosAOB=(OA·OB)/(│OA│·│OB│)=n²/1=((√2-√6)/4)²=(2-√3)/4
n=(√2+√6)/4时,m=p=(√2+√6)/4
cosAOB=(OA·OB)/(│OA│·│OB│)=n²/1=((√2+√6)/4)²=(2+√3)/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询