化简下列各式
1个回答
展开全部
解:(1)原式=1/a^3bxa^3/2b^3/(1/(ab)^1/2)
=a^(-3)b^(-1)xa^(3/2)b^3xa^1/2b^1/2
=a^(-3+3/2+1/2)b^(-1+3+1/2)
=a^(-1)b^(5/2)
(2)aba^1/2b^1/3/(a^1/3b^1/2)
=a^3/2b^1/3/(a^1/3b^1/2)
=a^(3/2-1/3)b^(1/3-1/2)
=a^(9-2)/6xb^(2-3)/6
=a^(7/6)b^(-1/6)
=a^(-3)b^(-1)xa^(3/2)b^3xa^1/2b^1/2
=a^(-3+3/2+1/2)b^(-1+3+1/2)
=a^(-1)b^(5/2)
(2)aba^1/2b^1/3/(a^1/3b^1/2)
=a^3/2b^1/3/(a^1/3b^1/2)
=a^(3/2-1/3)b^(1/3-1/2)
=a^(9-2)/6xb^(2-3)/6
=a^(7/6)b^(-1/6)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询