不等式的解法
设f(x)=ax^2+bx且1<=f(-1)<=2,2<=f(1)<=4,求f(-2)的取值范围,请用待定系数法和换元法详细解答,请详细点,或者也可以用自己的方法,我数学...
设f(x)=ax^2+bx且1<=f(-1)<=2,2<=f(1)<=4,求f(-2)的取值范围,请用待定系数法和换元法详细解答,请详细点,或者也可以用自己的方法,我数学差,看不懂就请详细点了。谢谢
展开
3个回答
展开全部
(1)能熟练运用不等式的基本性质来解不等式;
(2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法;
(3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解;
(4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想;
(5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习兴趣.
(2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法;
(3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解;
(4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想;
(5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习兴趣.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
-1≤f(-1)≤2---->-1≤a-b≤2
2≤f(1)≤4------>2≤a+b≤4---->6≤3(a+b)≤12
f(-2)=4a-2b=3(a+b)+(a-b)
所以,
6-1≤f(-2)≤12+2
5≤f(-2)≤14
2≤f(1)≤4------>2≤a+b≤4---->6≤3(a+b)≤12
f(-2)=4a-2b=3(a+b)+(a-b)
所以,
6-1≤f(-2)≤12+2
5≤f(-2)≤14
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-12-04
展开全部
画个图多想想就会了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询