4个回答
展开全部
生物的基本特性 生物体具有共同的物质基础和结构基础
新陈代谢作用
应激性
生长、发育、生殖
遗传和变异
生物体都能适应一定的环境和影响环境 生物体的基本组成物质中都有蛋白质和核酸。
蛋白质是生命活动的主要承担者。
核酸是遗传信息的携带者。
细胞是生物体的结构和功能的基本单位。
新陈代谢是活细中全部有序的化学变化的总称。
新陈代谢是生物体进行一切生命活动的基础。
生物学发展 三阶段:
描述性生物学、实验生物学、分子生物学 《细胞学说》——为研究生物的结构、生理、生殖和发育奠定了基础;
《物种起源》——推动现代生物学的发展方面起了巨大作用;
孟德尔;DNA双螺旋结构;
生物科学发展 生物工程、医药、农业、能源开发与环保 疫苗制造——核心:基因工程
抗虫棉;石油草;超级菌
生命的物质基础
生物体的生命活动都有共同的物质基础
化学元素 在不同的生物体内,各种化学元素的含量相差很大。
分类:大量元素、微量元素
化合物是生物体生命活动的物质基础。
化学元素能够影响生物体的生命活动。
生物界和非生物界具有统一性和差异性
化合物 水、无机盐、糖类、脂类、蛋白质、核酸。
水——自由水、结合水
无机盐的离子对于维持生物体的生命活动有重要作用。
糖类——单糖、二糖、多糖。
脂质——脂肪、类脂、固醇
自由水是细胞内的良好溶剂,可以把营养物质运送到各个细胞。
维持细胞的渗透压和酸碱平衡,细胞形态、功能。
糖类是构成生物体的重要成分,也是细胞的主要能源物质。
脂肪是生物体内储存能量的物质;减少身体热量散失,维持体温恒定,减少内脏摩擦,缓冲外界压力。
磷脂是构成细胞膜的重要成分。
固醇——胆固醇、维生素D、性激素;维持正常新陈代谢和生殖过程。
蛋白质与核酸 蛋白质和核酸都是高分子物质。
蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。
核酸是遗传信息的载体。
蛋白质结构:氨基酸的种类、数目、排列和肽链的空间结构。
蛋白质功能:催化、运输、调节、免疫、识别
染色体是遗传物质的主要载体。
生命的基本单位——细胞
细胞是生物体的结构和功能的基本单位。
细胞结构与功能 细胞分类:真核生物、原核生物
细胞具有非常精细的结构和复杂的自控功能。 细胞只有保持完整性,才能够正常地完成各项生命活动。
细胞膜 结构:流动镶嵌模型——磷脂、蛋白质。
基本骨架:磷脂双分子层
糖被的结构:蛋白质+多糖。
细胞壁:纤维素、果胶 功能:流动性、选择透过性
选择透过性:自由扩散(苯)、主动运输
主动运输:能保证活细胞按照生命活动的需要,选择吸收所需要的营养物质,排除新陈代谢产生的废物和有害物质。
糖被功能:保护和润滑、识别
细胞质 基质——营养物质
细胞质基质是活细胞进行新陈代谢的主要场所。
各种细胞器是完成其功能的结构基础和单位。
线粒体是活细胞进行有氧呼吸的主要场所。
叶绿体是细胞光合作用的场所。
内质网——光面:脂类、糖类合成与运输
粗面:糖蛋白的加工合成
核糖体
高尔基体
液泡对细胞的内环境起着调节作用,可以使细胞保持一定的渗透压和膨胀状态。
细胞核 结构:核膜、核仁、染色质
核膜——是选择透过性膜,但不是半透膜
染色质——DNA+蛋白质
染色质和染色体是细胞中同一种物质和不同时期的两种形态 功能:
核孔——核质之间进行物质交换的孔道。
细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。
细胞核在生命活动中起着决定作用。
原核细胞 主要特点是没有由核膜包围的典型细胞核。
其细胞壁不含纤维素,而主要是糖类和蛋白质。
没有复杂的细胞器,但有分散的核糖体。
拟核 裸露DNA
细胞相对较小
细胞增殖 方式:有丝分裂、无丝分裂,减数分裂。 细胞增殖是生物体生长、发育、繁殖、遗传的基础。
有丝分裂
细胞周期 有丝分裂是真核生物进行细胞分裂的主要方式。
体细胞进行有丝分裂是有周期性的,也就有细胞周期
动物与植物有丝分裂区别:前期、末期 不同种类的细胞,一个细胞周期的时间不同。
分裂间期最大特点:完成DNA分子复制和有关蛋白质的合成。
意义:保持了遗传性状的稳定性。
细胞分化 仅有细胞的增殖,而没有细胞分化,生物体不能进行正常的生长发育。
细胞分化是一种持久性的变化,发生在生物体的整个生命进程中,胚胎时期达最大限度。
细胞稳定性变异是不可逆转的。
细胞全能性:高度分化的植物细胞仍然具有发育成完整植株的潜在能力。 全能性表现最强的细胞是已启动分裂的干细胞;
受精卵具有最高全能性。
细胞癌变 细胞畸形分化。
致癌因子:物理、化学、病毒。
癌细胞由于原癌基因从抑制变成激活状态,使细胞发生转化而引起的。 特征:无限增殖;形态结构变化;细胞膜变化。
细胞衰老 是细胞生理和生化发生复杂变化的过程,最终反映在细胞的形态、结构、功能上发生了变化。 特征:水分减少,新陈代谢减弱;酶的活性降低;
色素积累,阻碍了细胞内物质交流和信息传递;
呼吸速度减慢,体积增大,染色质固缩、染色加深,物质运输功能降低。
第三章 生物新陈代谢
在新陈代谢基础上,生物体才能表现(生长发育遗传变异)生命的基本特征。 新陈代谢是生物最基本的特征,是生物与非生物最本质的区别。
酶 酶是活细胞的一类具有生物催化作用的有机物(蛋白质、核酸) 特征:高效性、专一性。
需要的适宜条件:适宜温度和PH
ATP ATP是新陈代谢所需能量的直接来源。
形成途径:动物——呼吸作用
植物——光合作用、呼吸作用
形成方式:ADP+Pi ATP在细胞内含量很少,但转化十分迅速,总是处于动态平衡。
光合作用 意义:除了将太阳能转化成化学能,并贮存在光合作用制造的糖类等有机物中,以及维持大气中氧和二氧化碳含量的相对稳定外,还对生物的进化具有重要作用。 蓝藻在地球上出现以后,地球大气中才逐渐含有氧。
水分代谢 渗透作用必备条件:
具有半透膜;两侧溶液具有浓度差。
原生质层:细胞膜、液泡膜和这两层膜之间的细胞质。 蒸腾作用是水分吸收和矿质元素运输的动力。
矿质代谢 矿质元素以离子形式被根尖吸收。
植物对水分的吸收和对矿质元素的吸收是相对独立的过程。 矿质元素的利用形式:N、P、Mg
Ca、Fe
营养物质代谢 三大营养物质的基本来源是食物。
糖类:食物中的糖类绝大部分是淀粉。
脂类:食物中的脂类绝大部分是脂肪。
蛋白质:合成;氨基转换;脱氨基
关注:血糖调节、肥胖问题、饮食搭配。
只有合理选择和搭配食物,养成良好饮食习惯,才能维持健康,保证人体新陈代谢、生长发育等生命活动的正常进行。
甘油&脂肪酸大部分再度合成为脂肪。
动物性食物所含氨基酸种类比植物性食物齐全。
三大营养物质之间相互联系,相互制约。他们之间可以转化,但是有条件,而且转化程度有明显差异。
内环境与稳态 内环境相关系统:循环、呼吸、消化、泌尿。
包括:细胞外液(组织液、血浆、淋巴)
内环境是体内细胞生存的直接环境。
内环境理化性质包括:温度、PH、渗透压等
稳态:机体在神经系统和体液的调节下,通过各器官、系统的协调活动,共同维持内环境的相对稳定状态。 体内细胞只有通过内环境,才能与外界环境进行物质交换。
稳态意义:机体新陈代谢是由细胞内很多复杂的酶促反应组成的,而酶促反应的进行需要温和的外界条件,必须保持在适宜的范围内,酶促反应才能正常进行。
呼吸作用 分类:有氧呼吸、无氧呼吸
有氧和无氧呼吸的第一阶段都在细胞质基质中进行。
无氧呼吸的场所是细胞质基质
生物体生命活动都需要呼吸作用供能 意义:呼吸作用能为生物体生命活动供能;呼吸过程能为体内其他化合物的合成提供原料。
新陈代谢类型 同化作用
异化作用 自养型:光能自养、化能自养
异养型
需氧型
厌氧型
第四章 生命活动的调节
植物生命活动调节基本形式激素调节
动物生命活动调节基本形式神经调节和体液调节。神经调节占主导地位。
植物 向性运动是植物受单一方向的外界刺激引起定向运动。
植物的向性运动是对外界环境的适应性。
其他激素:赤霉素、细胞分裂素;脱落酸、乙烯。
植物的生长发育过程,不是受单一激素调节,而是由多种激素相互协调、共同调节。 生长素是最早发现的一种植物激素。
生长素的生理作用具有两重性,这与生长素浓度和植物器官种类等有关。
生长素的运输是从形态学的上端向下端运输。
应用:促扦插枝条生根;促果实发育;防落花果。
动物——体液 体液调节:某些化学物质通过体液传送,对人和动物体的生理活动所进行的调节。
激素调节是体液调节的主要内容。
反馈调节:协同作用、拮抗作用。
通过反馈调节作用,血液中的激素经常维持在正常的相对稳定的水平。 下丘脑是机体调节内分泌活动的枢纽。
激素调节是通过改变细胞代谢而发挥作用。
生长激素与甲状腺激素;血糖调节。
动物——神经 生命活动调节主要是由神经调节来完成。
神经调节基本方式——反射。
反射活动结构基础——反射弧
兴奋传导形式——神经冲动。
兴奋传导:神经纤维上传导;细胞间传递
神经调节以反射方式实现;体液调节是激素随血液循环输送到全身来调节。体内大多数内分泌腺受中枢神经系统控制,分泌的激素可以影响神经系统的功能。 反射活动——非条件反射、条件反射。
条件反射大大地提高了动物适应复杂环境变化的能力。
神经中枢功能——分析和综合
神经纤维上传导——电位变化、双向
细胞间传递——突触、单向
动物——行为 动物行为是在神经系统、内分泌系统、运动器官共同调节作用下形成的。
行为受激素、神经调节控制。
先天性行为:趋性、本能、非条件反射
后天性行为:印随、模仿、条件反射
动物建立后天性行为主要方式:条件反射
动物后天性行为最高级形式:判断、推理
高等动物的复杂行为主要通过学习形成。 神经系统的调节作用处主导地位。
性激素与性行为之间有直接联系。
垂体分泌的促性腺激素能促进性腺发育和性激素分泌,进而影响动物性行为。
大多数本能行为比反射行为复杂。(迁徙、织网、哺乳)
生活体验和学习对行为的形成起决定作用。
判断、推理是通过学习获得。
学习主要是与大脑皮层有关。
生物的生殖和发育
生殖 无性生殖、有性生殖
有性生殖使产生的后代具备了双亲的遗传特性,具有更强的生活能力和变异性,对生物的生存和进化具有重要意义。 单子叶:玉米、小麦、水稻
双子叶:豆类(花生、大豆)、黄瓜、荠菜
减数分裂和受精作用维持每种生物前后代体细胞中染色体数目的恒定,具有遗传和变异作用。
个体发育 从受精卵开始发育到性成熟个体的过程。
植物个体发育 花芽形成标志生殖生长的开始。 受精卵经过短暂休眠;受精极核不经休眠。
胚柄产生激素类物质,促进胚体发育。
动物个体发育 胚胎发育、胚后发育
含色素的动物极总是朝上,保证胚胎发育所需的温度条件。
生物的个体发育是系统发育短暂而迅速的重演。 爬行类、鸟类、哺乳类的胚胎发育早期具有羊膜结构,保证了胚胎发育所需的水环境,具有防震和保护作用,增强了对陆地环境的适应能力。
遗传和变异
遗传物质基础 DNA的探索:
转化因子的发现→转化因子是DNA→DNA是遗传物质→DNA是主要遗传物质
DNA复制是边解旋边复制的过程。
复制方式——半保留复制。
基因的本质是具有遗传效应的DNA片段
基因是决定生物性状的基本单位。
基因对性状的控制:
1 通过控制酶的合成来控制代谢过程;
2 通过控制蛋白质分子结构来直接影响 脱氧核苷酸是构成DNA的基本单位。
染色体是遗传物质的主要载体。
DNA分子结构:DNA双螺旋结构
碱基互补配对原则
碱基不同排列构成了DNA的多样性,也说明了生物体具有多样性和特异性的原因。
DNA双螺旋结构和碱基互补配对原则保证了复制能够精确、准确地进行,保持了遗传的连续性。
各种生物都公用同一套遗传密码。
中心法则的书写。
一个性状可由多个基因控制。
生物变异 不可遗传:不引起体内遗传物质变化
可遗传:基因突变、基因重组、染色体变异
多倍体产生原因,是体细胞在有丝分裂过程中,染色体完成了复制,但受外界影响,使纺锤体形成受破坏,从而染色体加倍。 基因突变是生物变异的根本来源,为生物进化提供了最初的原材料。
通过有性生殖过程实现的基因重组,为生物变异提供了极其丰富的来源,是形成生物多样性的 重要原因之一。
多倍体育种营养物质增加,但发育延迟、结实少。
单倍体育种可以在短时间内得到一个稳定的纯系品种,明显缩短了育种年限。
优生措施 禁止近亲结婚;遗传咨询;适龄生育;产前诊断。
生物进化
进化基本单位---——种群
进化实质——种群基因频率的改变
突变和基因重组只是产生生物进化的原材料,不能决定生物进化方向。
生物进化方向由自然选择决定。
不同种群之间一旦产生生殖隔离,就不会有基因交流。 突变和基因重组是生物进化的原材料;
自然选择决定生物进化方向;
隔离是新物种形成必要条件。
生物与环境
生态因素 非生物因素
光:光对植物的生理和分布起着决定性作用。
光对动物的影响很明显。(繁殖活动)
温度:温度对生物分布、生长、发育的影响
水:决定陆地生物分布的重要因素。 生物因素
种内关系:种内互助、种内斗争
种间关系:互利共生、寄生、竞争、捕食
种群 特征:种群密度、出生率和死亡率、年龄组成、性别比例。
数量变化:“J”曲线、“S”曲线。
研究数量变化意义:在野生生物资源的合理利用和保护、害虫防治方面。 影响种群变化因素:气候、食物、被捕食、传染病。
人类活动对自然界中种群数量变化的影响越来越大。
生物群落 垂直结构、水平结构
生态系统 结构
成分:非生物的物质和能量;生产者;消费者;分解者。
成分间联系——食物链、食物网
生产者固定的太阳能的总量是流经该系统的总能量。
能量流动特点:单向流动、逐级递减
物质循环和能量流动沿着食物链、网进行的。
据此实现对能量的多极利用,从而大大提高能量利用效率。
能量流动和物质循环是生态系统的主要功能。
生态系统稳定性 生态系统的自动调节能力是有一定限度。
一个生态系统,抵抗力稳定性与恢复力稳定性之间往往存在相反的关系。 生态系统成分越单纯,营养结构越简单,自动调节能力越低,抵抗力稳定性越低
新陈代谢作用
应激性
生长、发育、生殖
遗传和变异
生物体都能适应一定的环境和影响环境 生物体的基本组成物质中都有蛋白质和核酸。
蛋白质是生命活动的主要承担者。
核酸是遗传信息的携带者。
细胞是生物体的结构和功能的基本单位。
新陈代谢是活细中全部有序的化学变化的总称。
新陈代谢是生物体进行一切生命活动的基础。
生物学发展 三阶段:
描述性生物学、实验生物学、分子生物学 《细胞学说》——为研究生物的结构、生理、生殖和发育奠定了基础;
《物种起源》——推动现代生物学的发展方面起了巨大作用;
孟德尔;DNA双螺旋结构;
生物科学发展 生物工程、医药、农业、能源开发与环保 疫苗制造——核心:基因工程
抗虫棉;石油草;超级菌
生命的物质基础
生物体的生命活动都有共同的物质基础
化学元素 在不同的生物体内,各种化学元素的含量相差很大。
分类:大量元素、微量元素
化合物是生物体生命活动的物质基础。
化学元素能够影响生物体的生命活动。
生物界和非生物界具有统一性和差异性
化合物 水、无机盐、糖类、脂类、蛋白质、核酸。
水——自由水、结合水
无机盐的离子对于维持生物体的生命活动有重要作用。
糖类——单糖、二糖、多糖。
脂质——脂肪、类脂、固醇
自由水是细胞内的良好溶剂,可以把营养物质运送到各个细胞。
维持细胞的渗透压和酸碱平衡,细胞形态、功能。
糖类是构成生物体的重要成分,也是细胞的主要能源物质。
脂肪是生物体内储存能量的物质;减少身体热量散失,维持体温恒定,减少内脏摩擦,缓冲外界压力。
磷脂是构成细胞膜的重要成分。
固醇——胆固醇、维生素D、性激素;维持正常新陈代谢和生殖过程。
蛋白质与核酸 蛋白质和核酸都是高分子物质。
蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。
核酸是遗传信息的载体。
蛋白质结构:氨基酸的种类、数目、排列和肽链的空间结构。
蛋白质功能:催化、运输、调节、免疫、识别
染色体是遗传物质的主要载体。
生命的基本单位——细胞
细胞是生物体的结构和功能的基本单位。
细胞结构与功能 细胞分类:真核生物、原核生物
细胞具有非常精细的结构和复杂的自控功能。 细胞只有保持完整性,才能够正常地完成各项生命活动。
细胞膜 结构:流动镶嵌模型——磷脂、蛋白质。
基本骨架:磷脂双分子层
糖被的结构:蛋白质+多糖。
细胞壁:纤维素、果胶 功能:流动性、选择透过性
选择透过性:自由扩散(苯)、主动运输
主动运输:能保证活细胞按照生命活动的需要,选择吸收所需要的营养物质,排除新陈代谢产生的废物和有害物质。
糖被功能:保护和润滑、识别
细胞质 基质——营养物质
细胞质基质是活细胞进行新陈代谢的主要场所。
各种细胞器是完成其功能的结构基础和单位。
线粒体是活细胞进行有氧呼吸的主要场所。
叶绿体是细胞光合作用的场所。
内质网——光面:脂类、糖类合成与运输
粗面:糖蛋白的加工合成
核糖体
高尔基体
液泡对细胞的内环境起着调节作用,可以使细胞保持一定的渗透压和膨胀状态。
细胞核 结构:核膜、核仁、染色质
核膜——是选择透过性膜,但不是半透膜
染色质——DNA+蛋白质
染色质和染色体是细胞中同一种物质和不同时期的两种形态 功能:
核孔——核质之间进行物质交换的孔道。
细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。
细胞核在生命活动中起着决定作用。
原核细胞 主要特点是没有由核膜包围的典型细胞核。
其细胞壁不含纤维素,而主要是糖类和蛋白质。
没有复杂的细胞器,但有分散的核糖体。
拟核 裸露DNA
细胞相对较小
细胞增殖 方式:有丝分裂、无丝分裂,减数分裂。 细胞增殖是生物体生长、发育、繁殖、遗传的基础。
有丝分裂
细胞周期 有丝分裂是真核生物进行细胞分裂的主要方式。
体细胞进行有丝分裂是有周期性的,也就有细胞周期
动物与植物有丝分裂区别:前期、末期 不同种类的细胞,一个细胞周期的时间不同。
分裂间期最大特点:完成DNA分子复制和有关蛋白质的合成。
意义:保持了遗传性状的稳定性。
细胞分化 仅有细胞的增殖,而没有细胞分化,生物体不能进行正常的生长发育。
细胞分化是一种持久性的变化,发生在生物体的整个生命进程中,胚胎时期达最大限度。
细胞稳定性变异是不可逆转的。
细胞全能性:高度分化的植物细胞仍然具有发育成完整植株的潜在能力。 全能性表现最强的细胞是已启动分裂的干细胞;
受精卵具有最高全能性。
细胞癌变 细胞畸形分化。
致癌因子:物理、化学、病毒。
癌细胞由于原癌基因从抑制变成激活状态,使细胞发生转化而引起的。 特征:无限增殖;形态结构变化;细胞膜变化。
细胞衰老 是细胞生理和生化发生复杂变化的过程,最终反映在细胞的形态、结构、功能上发生了变化。 特征:水分减少,新陈代谢减弱;酶的活性降低;
色素积累,阻碍了细胞内物质交流和信息传递;
呼吸速度减慢,体积增大,染色质固缩、染色加深,物质运输功能降低。
第三章 生物新陈代谢
在新陈代谢基础上,生物体才能表现(生长发育遗传变异)生命的基本特征。 新陈代谢是生物最基本的特征,是生物与非生物最本质的区别。
酶 酶是活细胞的一类具有生物催化作用的有机物(蛋白质、核酸) 特征:高效性、专一性。
需要的适宜条件:适宜温度和PH
ATP ATP是新陈代谢所需能量的直接来源。
形成途径:动物——呼吸作用
植物——光合作用、呼吸作用
形成方式:ADP+Pi ATP在细胞内含量很少,但转化十分迅速,总是处于动态平衡。
光合作用 意义:除了将太阳能转化成化学能,并贮存在光合作用制造的糖类等有机物中,以及维持大气中氧和二氧化碳含量的相对稳定外,还对生物的进化具有重要作用。 蓝藻在地球上出现以后,地球大气中才逐渐含有氧。
水分代谢 渗透作用必备条件:
具有半透膜;两侧溶液具有浓度差。
原生质层:细胞膜、液泡膜和这两层膜之间的细胞质。 蒸腾作用是水分吸收和矿质元素运输的动力。
矿质代谢 矿质元素以离子形式被根尖吸收。
植物对水分的吸收和对矿质元素的吸收是相对独立的过程。 矿质元素的利用形式:N、P、Mg
Ca、Fe
营养物质代谢 三大营养物质的基本来源是食物。
糖类:食物中的糖类绝大部分是淀粉。
脂类:食物中的脂类绝大部分是脂肪。
蛋白质:合成;氨基转换;脱氨基
关注:血糖调节、肥胖问题、饮食搭配。
只有合理选择和搭配食物,养成良好饮食习惯,才能维持健康,保证人体新陈代谢、生长发育等生命活动的正常进行。
甘油&脂肪酸大部分再度合成为脂肪。
动物性食物所含氨基酸种类比植物性食物齐全。
三大营养物质之间相互联系,相互制约。他们之间可以转化,但是有条件,而且转化程度有明显差异。
内环境与稳态 内环境相关系统:循环、呼吸、消化、泌尿。
包括:细胞外液(组织液、血浆、淋巴)
内环境是体内细胞生存的直接环境。
内环境理化性质包括:温度、PH、渗透压等
稳态:机体在神经系统和体液的调节下,通过各器官、系统的协调活动,共同维持内环境的相对稳定状态。 体内细胞只有通过内环境,才能与外界环境进行物质交换。
稳态意义:机体新陈代谢是由细胞内很多复杂的酶促反应组成的,而酶促反应的进行需要温和的外界条件,必须保持在适宜的范围内,酶促反应才能正常进行。
呼吸作用 分类:有氧呼吸、无氧呼吸
有氧和无氧呼吸的第一阶段都在细胞质基质中进行。
无氧呼吸的场所是细胞质基质
生物体生命活动都需要呼吸作用供能 意义:呼吸作用能为生物体生命活动供能;呼吸过程能为体内其他化合物的合成提供原料。
新陈代谢类型 同化作用
异化作用 自养型:光能自养、化能自养
异养型
需氧型
厌氧型
第四章 生命活动的调节
植物生命活动调节基本形式激素调节
动物生命活动调节基本形式神经调节和体液调节。神经调节占主导地位。
植物 向性运动是植物受单一方向的外界刺激引起定向运动。
植物的向性运动是对外界环境的适应性。
其他激素:赤霉素、细胞分裂素;脱落酸、乙烯。
植物的生长发育过程,不是受单一激素调节,而是由多种激素相互协调、共同调节。 生长素是最早发现的一种植物激素。
生长素的生理作用具有两重性,这与生长素浓度和植物器官种类等有关。
生长素的运输是从形态学的上端向下端运输。
应用:促扦插枝条生根;促果实发育;防落花果。
动物——体液 体液调节:某些化学物质通过体液传送,对人和动物体的生理活动所进行的调节。
激素调节是体液调节的主要内容。
反馈调节:协同作用、拮抗作用。
通过反馈调节作用,血液中的激素经常维持在正常的相对稳定的水平。 下丘脑是机体调节内分泌活动的枢纽。
激素调节是通过改变细胞代谢而发挥作用。
生长激素与甲状腺激素;血糖调节。
动物——神经 生命活动调节主要是由神经调节来完成。
神经调节基本方式——反射。
反射活动结构基础——反射弧
兴奋传导形式——神经冲动。
兴奋传导:神经纤维上传导;细胞间传递
神经调节以反射方式实现;体液调节是激素随血液循环输送到全身来调节。体内大多数内分泌腺受中枢神经系统控制,分泌的激素可以影响神经系统的功能。 反射活动——非条件反射、条件反射。
条件反射大大地提高了动物适应复杂环境变化的能力。
神经中枢功能——分析和综合
神经纤维上传导——电位变化、双向
细胞间传递——突触、单向
动物——行为 动物行为是在神经系统、内分泌系统、运动器官共同调节作用下形成的。
行为受激素、神经调节控制。
先天性行为:趋性、本能、非条件反射
后天性行为:印随、模仿、条件反射
动物建立后天性行为主要方式:条件反射
动物后天性行为最高级形式:判断、推理
高等动物的复杂行为主要通过学习形成。 神经系统的调节作用处主导地位。
性激素与性行为之间有直接联系。
垂体分泌的促性腺激素能促进性腺发育和性激素分泌,进而影响动物性行为。
大多数本能行为比反射行为复杂。(迁徙、织网、哺乳)
生活体验和学习对行为的形成起决定作用。
判断、推理是通过学习获得。
学习主要是与大脑皮层有关。
生物的生殖和发育
生殖 无性生殖、有性生殖
有性生殖使产生的后代具备了双亲的遗传特性,具有更强的生活能力和变异性,对生物的生存和进化具有重要意义。 单子叶:玉米、小麦、水稻
双子叶:豆类(花生、大豆)、黄瓜、荠菜
减数分裂和受精作用维持每种生物前后代体细胞中染色体数目的恒定,具有遗传和变异作用。
个体发育 从受精卵开始发育到性成熟个体的过程。
植物个体发育 花芽形成标志生殖生长的开始。 受精卵经过短暂休眠;受精极核不经休眠。
胚柄产生激素类物质,促进胚体发育。
动物个体发育 胚胎发育、胚后发育
含色素的动物极总是朝上,保证胚胎发育所需的温度条件。
生物的个体发育是系统发育短暂而迅速的重演。 爬行类、鸟类、哺乳类的胚胎发育早期具有羊膜结构,保证了胚胎发育所需的水环境,具有防震和保护作用,增强了对陆地环境的适应能力。
遗传和变异
遗传物质基础 DNA的探索:
转化因子的发现→转化因子是DNA→DNA是遗传物质→DNA是主要遗传物质
DNA复制是边解旋边复制的过程。
复制方式——半保留复制。
基因的本质是具有遗传效应的DNA片段
基因是决定生物性状的基本单位。
基因对性状的控制:
1 通过控制酶的合成来控制代谢过程;
2 通过控制蛋白质分子结构来直接影响 脱氧核苷酸是构成DNA的基本单位。
染色体是遗传物质的主要载体。
DNA分子结构:DNA双螺旋结构
碱基互补配对原则
碱基不同排列构成了DNA的多样性,也说明了生物体具有多样性和特异性的原因。
DNA双螺旋结构和碱基互补配对原则保证了复制能够精确、准确地进行,保持了遗传的连续性。
各种生物都公用同一套遗传密码。
中心法则的书写。
一个性状可由多个基因控制。
生物变异 不可遗传:不引起体内遗传物质变化
可遗传:基因突变、基因重组、染色体变异
多倍体产生原因,是体细胞在有丝分裂过程中,染色体完成了复制,但受外界影响,使纺锤体形成受破坏,从而染色体加倍。 基因突变是生物变异的根本来源,为生物进化提供了最初的原材料。
通过有性生殖过程实现的基因重组,为生物变异提供了极其丰富的来源,是形成生物多样性的 重要原因之一。
多倍体育种营养物质增加,但发育延迟、结实少。
单倍体育种可以在短时间内得到一个稳定的纯系品种,明显缩短了育种年限。
优生措施 禁止近亲结婚;遗传咨询;适龄生育;产前诊断。
生物进化
进化基本单位---——种群
进化实质——种群基因频率的改变
突变和基因重组只是产生生物进化的原材料,不能决定生物进化方向。
生物进化方向由自然选择决定。
不同种群之间一旦产生生殖隔离,就不会有基因交流。 突变和基因重组是生物进化的原材料;
自然选择决定生物进化方向;
隔离是新物种形成必要条件。
生物与环境
生态因素 非生物因素
光:光对植物的生理和分布起着决定性作用。
光对动物的影响很明显。(繁殖活动)
温度:温度对生物分布、生长、发育的影响
水:决定陆地生物分布的重要因素。 生物因素
种内关系:种内互助、种内斗争
种间关系:互利共生、寄生、竞争、捕食
种群 特征:种群密度、出生率和死亡率、年龄组成、性别比例。
数量变化:“J”曲线、“S”曲线。
研究数量变化意义:在野生生物资源的合理利用和保护、害虫防治方面。 影响种群变化因素:气候、食物、被捕食、传染病。
人类活动对自然界中种群数量变化的影响越来越大。
生物群落 垂直结构、水平结构
生态系统 结构
成分:非生物的物质和能量;生产者;消费者;分解者。
成分间联系——食物链、食物网
生产者固定的太阳能的总量是流经该系统的总能量。
能量流动特点:单向流动、逐级递减
物质循环和能量流动沿着食物链、网进行的。
据此实现对能量的多极利用,从而大大提高能量利用效率。
能量流动和物质循环是生态系统的主要功能。
生态系统稳定性 生态系统的自动调节能力是有一定限度。
一个生态系统,抵抗力稳定性与恢复力稳定性之间往往存在相反的关系。 生态系统成分越单纯,营养结构越简单,自动调节能力越低,抵抗力稳定性越低
展开全部
生物的基本特性 生物体具有共同的物质基础和结构基础
新陈代谢作用
应激性
生长、发育、生殖
遗传和变异
生物体都能适应一定的环境和影响环境 生物体的基本组成物质中都有蛋白质和核酸。
蛋白质是生命活动的主要承担者。
核酸是遗传信息的携带者。
细胞是生物体的结构和功能的基本单位。
新陈代谢是活细中全部有序的化学变化的总称。
新陈代谢是生物体进行一切生命活动的基础。
生物学发展 三阶段:
描述性生物学、实验生物学、分子生物学 《细胞学说》——为研究生物的结构、生理、生殖和发育奠定了基础;
《物种起源》——推动现代生物学的发展方面起了巨大作用;
孟德尔;DNA双螺旋结构;
生物科学发展 生物工程、医药、农业、能源开发与环保 疫苗制造——核心:基因工程
抗虫棉;石油草;超级菌
生命的物质基础
生物体的生命活动都有共同的物质基础
化学元素 在不同的生物体内,各种化学元素的含量相差很大。
分类:大量元素、微量元素
化合物是生物体生命活动的物质基础。
化学元素能够影响生物体的生命活动。
生物界和非生物界具有统一性和差异性
化合物 水、无机盐、糖类、脂类、蛋白质、核酸。
水——自由水、结合水
无机盐的离子对于维持生物体的生命活动有重要作用。
糖类——单糖、二糖、多糖。
脂质——脂肪、类脂、固醇
自由水是细胞内的良好溶剂,可以把营养物质运送到各个细胞。
维持细胞的渗透压和酸碱平衡,细胞形态、功能。
糖类是构成生物体的重要成分,也是细胞的主要能源物质。
脂肪是生物体内储存能量的物质;减少身体热量散失,维持体温恒定,减少内脏摩擦,缓冲外界压力。
磷脂是构成细胞膜的重要成分。
固醇——胆固醇、维生素D、性激素;维持正常新陈代谢和生殖过程。
蛋白质与核酸 蛋白质和核酸都是高分子物质。
蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。
核酸是遗传信息的载体。
蛋白质结构:氨基酸的种类、数目、排列和肽链的空间结构。
蛋白质功能:催化、运输、调节、免疫、识别
染色体是遗传物质的主要载体。
生命的基本单位——细胞
细胞是生物体的结构和功能的基本单位。
细胞结构与功能 细胞分类:真核生物、原核生物
细胞具有非常精细的结构和复杂的自控功能。 细胞只有保持完整性,才能够正常地完成各项生命活动。
细胞膜 结构:流动镶嵌模型——磷脂、蛋白质。
基本骨架:磷脂双分子层
糖被的结构:蛋白质+多糖。
细胞壁:纤维素、果胶 功能:流动性、选择透过性
选择透过性:自由扩散(苯)、主动运输
主动运输:能保证活细胞按照生命活动的需要,选择吸收所需要的营养物质,排除新陈代谢产生的废物和有害物质。
糖被功能:保护和润滑、识别
细胞质 基质——营养物质
细胞质基质是活细胞进行新陈代谢的主要场所。
各种细胞器是完成其功能的结构基础和单位。
线粒体是活细胞进行有氧呼吸的主要场所。
叶绿体是细胞光合作用的场所。
内质网——光面:脂类、糖类合成与运输
粗面:糖蛋白的加工合成
核糖体
高尔基体
液泡对细胞的内环境起着调节作用,可以使细胞保持一定的渗透压和膨胀状态。
细胞核 结构:核膜、核仁、染色质
核膜——是选择透过性膜,但不是半透膜
染色质——DNA+蛋白质
染色质和染色体是细胞中同一种物质和不同时期的两种形态 功能:
核孔——核质之间进行物质交换的孔道。
细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。
细胞核在生命活动中起着决定作用。
原核细胞 主要特点是没有由核膜包围的典型细胞核。
其细胞壁不含纤维素,而主要是糖类和蛋白质。
没有复杂的细胞器,但有分散的核糖体。
拟核 裸露DNA
细胞相对较小
细胞增殖 方式:有丝分裂、无丝分裂,减数分裂。 细胞增殖是生物体生长、发育、繁殖、遗传的基础。
有丝分裂
细胞周期 有丝分裂是真核生物进行细胞分裂的主要方式。
体细胞进行有丝分裂是有周期性的,也就有细胞周期
动物与植物有丝分裂区别:前期、末期 不同种类的细胞,一个细胞周期的时间不同。
分裂间期最大特点:完成DNA分子复制和有关蛋白质的合成。
意义:保持了遗传性状的稳定性。
细胞分化 仅有细胞的增殖,而没有细胞分化,生物体不能进行正常的生长发育。
细胞分化是一种持久性的变化,发生在生物体的整个生命进程中,胚胎时期达最大限度。
细胞稳定性变异是不可逆转的。
细胞全能性:高度分化的植物细胞仍然具有发育成完整植株的潜在能力。 全能性表现最强的细胞是已启动分裂的干细胞;
受精卵具有最高全能性。
细胞癌变 细胞畸形分化。
致癌因子:物理、化学、病毒。
癌细胞由于原癌基因从抑制变成激活状态,使细胞发生转化而引起的。 特征:无限增殖;形态结构变化;细胞膜变化。
细胞衰老 是细胞生理和生化发生复杂变化的过程,最终反映在细胞的形态、结构、功能上发生了变化。 特征:水分减少,新陈代谢减弱;酶的活性降低;
色素积累,阻碍了细胞内物质交流和信息传递;
呼吸速度减慢,体积增大,染色质固缩、染色加深,物质运输功能降低。
第三章 生物新陈代谢
在新陈代谢基础上,生物体才能表现(生长发育遗传变异)生命的基本特征。 新陈代谢是生物最基本的特征,是生物与非生物最本质的区别。
酶 酶是活细胞的一类具有生物催化作用的有机物(蛋白质、核酸) 特征:高效性、专一性。
需要的适宜条件:适宜温度和PH
ATP ATP是新陈代谢所需能量的直接来源。
形成途径:动物——呼吸作用
植物——光合作用、呼吸作用
形成方式:ADP+Pi ATP在细胞内含量很少,但转化十分迅速,总是处于动态平衡。
光合作用 意义:除了将太阳能转化成化学能,并贮存在光合作用制造的糖类等有机物中,以及维持大气中氧和二氧化碳含量的相对稳定外,还对生物的进化具有重要作用。 蓝藻在地球上出现以后,地球大气中才逐渐含有氧。
水分代谢 渗透作用必备条件:
具有半透膜;两侧溶液具有浓度差。
原生质层:细胞膜、液泡膜和这两层膜之间的细胞质。 蒸腾作用是水分吸收和矿质元素运输的动力。
矿质代谢 矿质元素以离子形式被根尖吸收。
植物对水分的吸收和对矿质元素的吸收是相对独立的过程。 矿质元素的利用形式:N、P、Mg
Ca、Fe
营养物质代谢 三大营养物质的基本来源是食物。
糖类:食物中的糖类绝大部分是淀粉。
脂类:食物中的脂类绝大部分是脂肪。
蛋白质:合成;氨基转换;脱氨基
关注:血糖调节、肥胖问题、饮食搭配。
只有合理选择和搭配食物,养成良好饮食习惯,才能维持健康,保证人体新陈代谢、生长发育等生命活动的正常进行。
甘油&脂肪酸大部分再度合成为脂肪。
动物性食物所含氨基酸种类比植物性食物齐全。
三大营养物质之间相互联系,相互制约。他们之间可以转化,但是有条件,而且转化程度有明显差异。
内环境与稳态 内环境相关系统:循环、呼吸、消化、泌尿。
包括:细胞外液(组织液、血浆、淋巴)
内环境是体内细胞生存的直接环境。
内环境理化性质包括:温度、PH、渗透压等
稳态:机体在神经系统和体液的调节下,通过各器官、系统的协调活动,共同维持内环境的相对稳定状态。 体内细胞只有通过内环境,才能与外界环境进行物质交换。
稳态意义:机体新陈代谢是由细胞内很多复杂的酶促反应组成的,而酶促反应的进行需要温和的外界条件,必须保持在适宜的范围内,酶促反应才能正常进行。
呼吸作用 分类:有氧呼吸、无氧呼吸
有氧和无氧呼吸的第一阶段都在细胞质基质中进行。
无氧呼吸的场所是细胞质基质
生物体生命活动都需要呼吸作用供能 意义:呼吸作用能为生物体生命活动供能;呼吸过程能为体内其他化合物的合成提供原料。
新陈代谢类型 同化作用
异化作用 自养型:光能自养、化能自养
异养型
需氧型
厌氧型
第四章 生命活动的调节
植物生命活动调节基本形式激素调节
动物生命活动调节基本形式神经调节和体液调节。神经调节占主导地位。
植物 向性运动是植物受单一方向的外界刺激引起定向运动。
植物的向性运动是对外界环境的适应性。
其他激素:赤霉素、细胞分裂素;脱落酸、乙烯。
植物的生长发育过程,不是受单一激素调节,而是由多种激素相互协调、共同调节。 生长素是最早发现的一种植物激素。
生长素的生理作用具有两重性,这与生长素浓度和植物器官种类等有关。
生长素的运输是从形态学的上端向下端运输。
应用:促扦插枝条生根;促果实发育;防落花果。
动物——体液 体液调节:某些化学物质通过体液传送,对人和动物体的生理活动所进行的调节。
激素调节是体液调节的主要内容。
反馈调节:协同作用、拮抗作用。
通过反馈调节作用,血液中的激素经常维持在正常的相对稳定的水平。 下丘脑是机体调节内分泌活动的枢纽。
激素调节是通过改变细胞代谢而发挥作用。
生长激素与甲状腺激素;血糖调节。
动物——神经 生命活动调节主要是由神经调节来完成。
神经调节基本方式——反射。
反射活动结构基础——反射弧
兴奋传导形式——神经冲动。
兴奋传导:神经纤维上传导;细胞间传递
神经调节以反射方式实现;体液调节是激素随血液循环输送到全身来调节。体内大多数内分泌腺受中枢神经系统控制,分泌的激素可以影响神经系统的功能。 反射活动——非条件反射、条件反射。
条件反射大大地提高了动物适应复杂环境变化的能力。
神经中枢功能——分析和综合
神经纤维上传导——电位变化、双向
细胞间传递——突触、单向
动物——行为 动物行为是在神经系统、内分泌系统、运动器官共同调节作用下形成的。
行为受激素、神经调节控制。
先天性行为:趋性、本能、非条件反射
后天性行为:印随、模仿、条件反射
动物建立后天性行为主要方式:条件反射
动物后天性行为最高级形式:判断、推理
高等动物的复杂行为主要通过学习形成。 神经系统的调节作用处主导地位。
性激素与性行为之间有直接联系。
垂体分泌的促性腺激素能促进性腺发育和性激素分泌,进而影响动物性行为。
大多数本能行为比反射行为复杂。(迁徙、织网、哺乳)
生活体验和学习对行为的形成起决定作用。
判断、推理是通过学习获得。
学习主要是与大脑皮层有关。
生物的生殖和发育
生殖 无性生殖、有性生殖
有性生殖使产生的后代具备了双亲的遗传特性,具有更强的生活能力和变异性,对生物的生存和进化具有重要意义。 单子叶:玉米、小麦、水稻
双子叶:豆类(花生、大豆)、黄瓜、荠菜
减数分裂和受精作用维持每种生物前后代体细胞中染色体数目的恒定,具有遗传和变异作用。
个体发育 从受精卵开始发育到性成熟个体的过程。
植物个体发育 花芽形成标志生殖生长的开始。 受精卵经过短暂休眠;受精极核不经休眠。
胚柄产生激素类物质,促进胚体发育。
动物个体发育 胚胎发育、胚后发育
含色素的动物极总是朝上,保证胚胎发育所需的温度条件。
生物的个体发育是系统发育短暂而迅速的重演。 爬行类、鸟类、哺乳类的胚胎发育早期具有羊膜结构,保证了胚胎发育所需的水环境,具有防震和保护作用,增强了对陆地环境的适应能力。
遗传和变异
遗传物质基础 DNA的探索:
转化因子的发现→转化因子是DNA→DNA是遗传物质→DNA是主要遗传物质
DNA复制是边解旋边复制的过程。
复制方式——半保留复制。
基因的本质是具有遗传效应的DNA片段
基因是决定生物性状的基本单位。
基因对性状的控制:
1 通过控制酶的合成来控制代谢过程;
2 通过控制蛋白质分子结构来直接影响 脱氧核苷酸是构成DNA的基本单位。
染色体是遗传物质的主要载体。
DNA分子结构:DNA双螺旋结构
碱基互补配对原则
碱基不同排列构成了DNA的多样性,也说明了生物体具有多样性和特异性的原因。
DNA双螺旋结构和碱基互补配对原则保证了复制能够精确、准确地进行,保持了遗传的连续性。
各种生物都公用同一套遗传密码。
中心法则的书写。
一个性状可由多个基因控制。
生物变异 不可遗传:不引起体内遗传物质变化
可遗传:基因突变、基因重组、染色体变异
多倍体产生原因,是体细胞在有丝分裂过程中,染色体完成了复制,但受外界影响,使纺锤体形成受破坏,从而染色体加倍。 基因突变是生物变异的根本来源,为生物进化提供了最初的原材料。
通过有性生殖过程实现的基因重组,为生物变异提供了极其丰富的来源,是形成生物多样性的 重要原因之一。
多倍体育种营养物质增加,但发育延迟、结实少。
单倍体育种可以在短时间内得到一个稳定的纯系品种,明显缩短了育种年限。
优生措施 禁止近亲结婚;遗传咨询;适龄生育;产前诊断。
生物进化
进化基本单位---——种群
进化实质——种群基因频率的改变
突变和基因重组只是产生生物进化的原材料,不能决定生物进化方向。
生物进化方向由自然选择决定。
不同种群之间一旦产生生殖隔离,就不会有基因交流。 突变和基因重组是生物进化的原材料;
自然选择决定生物进化方向;
隔离是新物种形成必要条件。
生物与环境
生态因素 非生物因素
光:光对植物的生理和分布起着决定性作用。
光对动物的影响很明显。(繁殖活动)
温度:温度对生物分布、生长、发育的影响
水:决定陆地生物分布的重要因素。 生物因素
种内关系:种内互助、种内斗争
种间关系:互利共生、寄生、竞争、捕食
种群 特征:种群密度、出生率和死亡率、年龄组成、性别比例。
数量变化:“J”曲线、“S”曲线。
研究数量变化意义:在野生生物资源的合理利用和保护、害虫防治方面。 影响种群变化因素:气候、食物、被捕食、传染病。
人类活动对自然界中种群数量变化的影响越来越大。
生物群落 垂直结构、水平结构
生态系统 结构
成分:非生物的物质和能量;生产者;消费者;分解者。
成分间联系——食物链、食物网
生产者固定的太阳能的总量是流经该系统的总能量。
能量流动特点:单向流动、逐级递减
物质循环和能量流动沿着食物链、网进行的。
据此实现对能量的多极利用,从而大大提高能量利用效率。
能量流动和物质循环是生态系统的主要功能。
生态系统稳定性 生态系统的自动调节能力是有一定限度。
一个生态系统,抵抗力稳定性与恢复力稳定性之间往往存在相反的关系。 生态系统成分越单纯,营养结构越简单,自动调节能力越低,抵抗力稳定性越低
如果有啥生物上的难题,欢迎来到“高中生物吧”O(∩_∩)O~:http://tieba.baidu.com/f?kw=%B8%DF%D6%D0%C9%FA%CE%EF%20&t=4
新陈代谢作用
应激性
生长、发育、生殖
遗传和变异
生物体都能适应一定的环境和影响环境 生物体的基本组成物质中都有蛋白质和核酸。
蛋白质是生命活动的主要承担者。
核酸是遗传信息的携带者。
细胞是生物体的结构和功能的基本单位。
新陈代谢是活细中全部有序的化学变化的总称。
新陈代谢是生物体进行一切生命活动的基础。
生物学发展 三阶段:
描述性生物学、实验生物学、分子生物学 《细胞学说》——为研究生物的结构、生理、生殖和发育奠定了基础;
《物种起源》——推动现代生物学的发展方面起了巨大作用;
孟德尔;DNA双螺旋结构;
生物科学发展 生物工程、医药、农业、能源开发与环保 疫苗制造——核心:基因工程
抗虫棉;石油草;超级菌
生命的物质基础
生物体的生命活动都有共同的物质基础
化学元素 在不同的生物体内,各种化学元素的含量相差很大。
分类:大量元素、微量元素
化合物是生物体生命活动的物质基础。
化学元素能够影响生物体的生命活动。
生物界和非生物界具有统一性和差异性
化合物 水、无机盐、糖类、脂类、蛋白质、核酸。
水——自由水、结合水
无机盐的离子对于维持生物体的生命活动有重要作用。
糖类——单糖、二糖、多糖。
脂质——脂肪、类脂、固醇
自由水是细胞内的良好溶剂,可以把营养物质运送到各个细胞。
维持细胞的渗透压和酸碱平衡,细胞形态、功能。
糖类是构成生物体的重要成分,也是细胞的主要能源物质。
脂肪是生物体内储存能量的物质;减少身体热量散失,维持体温恒定,减少内脏摩擦,缓冲外界压力。
磷脂是构成细胞膜的重要成分。
固醇——胆固醇、维生素D、性激素;维持正常新陈代谢和生殖过程。
蛋白质与核酸 蛋白质和核酸都是高分子物质。
蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。
核酸是遗传信息的载体。
蛋白质结构:氨基酸的种类、数目、排列和肽链的空间结构。
蛋白质功能:催化、运输、调节、免疫、识别
染色体是遗传物质的主要载体。
生命的基本单位——细胞
细胞是生物体的结构和功能的基本单位。
细胞结构与功能 细胞分类:真核生物、原核生物
细胞具有非常精细的结构和复杂的自控功能。 细胞只有保持完整性,才能够正常地完成各项生命活动。
细胞膜 结构:流动镶嵌模型——磷脂、蛋白质。
基本骨架:磷脂双分子层
糖被的结构:蛋白质+多糖。
细胞壁:纤维素、果胶 功能:流动性、选择透过性
选择透过性:自由扩散(苯)、主动运输
主动运输:能保证活细胞按照生命活动的需要,选择吸收所需要的营养物质,排除新陈代谢产生的废物和有害物质。
糖被功能:保护和润滑、识别
细胞质 基质——营养物质
细胞质基质是活细胞进行新陈代谢的主要场所。
各种细胞器是完成其功能的结构基础和单位。
线粒体是活细胞进行有氧呼吸的主要场所。
叶绿体是细胞光合作用的场所。
内质网——光面:脂类、糖类合成与运输
粗面:糖蛋白的加工合成
核糖体
高尔基体
液泡对细胞的内环境起着调节作用,可以使细胞保持一定的渗透压和膨胀状态。
细胞核 结构:核膜、核仁、染色质
核膜——是选择透过性膜,但不是半透膜
染色质——DNA+蛋白质
染色质和染色体是细胞中同一种物质和不同时期的两种形态 功能:
核孔——核质之间进行物质交换的孔道。
细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。
细胞核在生命活动中起着决定作用。
原核细胞 主要特点是没有由核膜包围的典型细胞核。
其细胞壁不含纤维素,而主要是糖类和蛋白质。
没有复杂的细胞器,但有分散的核糖体。
拟核 裸露DNA
细胞相对较小
细胞增殖 方式:有丝分裂、无丝分裂,减数分裂。 细胞增殖是生物体生长、发育、繁殖、遗传的基础。
有丝分裂
细胞周期 有丝分裂是真核生物进行细胞分裂的主要方式。
体细胞进行有丝分裂是有周期性的,也就有细胞周期
动物与植物有丝分裂区别:前期、末期 不同种类的细胞,一个细胞周期的时间不同。
分裂间期最大特点:完成DNA分子复制和有关蛋白质的合成。
意义:保持了遗传性状的稳定性。
细胞分化 仅有细胞的增殖,而没有细胞分化,生物体不能进行正常的生长发育。
细胞分化是一种持久性的变化,发生在生物体的整个生命进程中,胚胎时期达最大限度。
细胞稳定性变异是不可逆转的。
细胞全能性:高度分化的植物细胞仍然具有发育成完整植株的潜在能力。 全能性表现最强的细胞是已启动分裂的干细胞;
受精卵具有最高全能性。
细胞癌变 细胞畸形分化。
致癌因子:物理、化学、病毒。
癌细胞由于原癌基因从抑制变成激活状态,使细胞发生转化而引起的。 特征:无限增殖;形态结构变化;细胞膜变化。
细胞衰老 是细胞生理和生化发生复杂变化的过程,最终反映在细胞的形态、结构、功能上发生了变化。 特征:水分减少,新陈代谢减弱;酶的活性降低;
色素积累,阻碍了细胞内物质交流和信息传递;
呼吸速度减慢,体积增大,染色质固缩、染色加深,物质运输功能降低。
第三章 生物新陈代谢
在新陈代谢基础上,生物体才能表现(生长发育遗传变异)生命的基本特征。 新陈代谢是生物最基本的特征,是生物与非生物最本质的区别。
酶 酶是活细胞的一类具有生物催化作用的有机物(蛋白质、核酸) 特征:高效性、专一性。
需要的适宜条件:适宜温度和PH
ATP ATP是新陈代谢所需能量的直接来源。
形成途径:动物——呼吸作用
植物——光合作用、呼吸作用
形成方式:ADP+Pi ATP在细胞内含量很少,但转化十分迅速,总是处于动态平衡。
光合作用 意义:除了将太阳能转化成化学能,并贮存在光合作用制造的糖类等有机物中,以及维持大气中氧和二氧化碳含量的相对稳定外,还对生物的进化具有重要作用。 蓝藻在地球上出现以后,地球大气中才逐渐含有氧。
水分代谢 渗透作用必备条件:
具有半透膜;两侧溶液具有浓度差。
原生质层:细胞膜、液泡膜和这两层膜之间的细胞质。 蒸腾作用是水分吸收和矿质元素运输的动力。
矿质代谢 矿质元素以离子形式被根尖吸收。
植物对水分的吸收和对矿质元素的吸收是相对独立的过程。 矿质元素的利用形式:N、P、Mg
Ca、Fe
营养物质代谢 三大营养物质的基本来源是食物。
糖类:食物中的糖类绝大部分是淀粉。
脂类:食物中的脂类绝大部分是脂肪。
蛋白质:合成;氨基转换;脱氨基
关注:血糖调节、肥胖问题、饮食搭配。
只有合理选择和搭配食物,养成良好饮食习惯,才能维持健康,保证人体新陈代谢、生长发育等生命活动的正常进行。
甘油&脂肪酸大部分再度合成为脂肪。
动物性食物所含氨基酸种类比植物性食物齐全。
三大营养物质之间相互联系,相互制约。他们之间可以转化,但是有条件,而且转化程度有明显差异。
内环境与稳态 内环境相关系统:循环、呼吸、消化、泌尿。
包括:细胞外液(组织液、血浆、淋巴)
内环境是体内细胞生存的直接环境。
内环境理化性质包括:温度、PH、渗透压等
稳态:机体在神经系统和体液的调节下,通过各器官、系统的协调活动,共同维持内环境的相对稳定状态。 体内细胞只有通过内环境,才能与外界环境进行物质交换。
稳态意义:机体新陈代谢是由细胞内很多复杂的酶促反应组成的,而酶促反应的进行需要温和的外界条件,必须保持在适宜的范围内,酶促反应才能正常进行。
呼吸作用 分类:有氧呼吸、无氧呼吸
有氧和无氧呼吸的第一阶段都在细胞质基质中进行。
无氧呼吸的场所是细胞质基质
生物体生命活动都需要呼吸作用供能 意义:呼吸作用能为生物体生命活动供能;呼吸过程能为体内其他化合物的合成提供原料。
新陈代谢类型 同化作用
异化作用 自养型:光能自养、化能自养
异养型
需氧型
厌氧型
第四章 生命活动的调节
植物生命活动调节基本形式激素调节
动物生命活动调节基本形式神经调节和体液调节。神经调节占主导地位。
植物 向性运动是植物受单一方向的外界刺激引起定向运动。
植物的向性运动是对外界环境的适应性。
其他激素:赤霉素、细胞分裂素;脱落酸、乙烯。
植物的生长发育过程,不是受单一激素调节,而是由多种激素相互协调、共同调节。 生长素是最早发现的一种植物激素。
生长素的生理作用具有两重性,这与生长素浓度和植物器官种类等有关。
生长素的运输是从形态学的上端向下端运输。
应用:促扦插枝条生根;促果实发育;防落花果。
动物——体液 体液调节:某些化学物质通过体液传送,对人和动物体的生理活动所进行的调节。
激素调节是体液调节的主要内容。
反馈调节:协同作用、拮抗作用。
通过反馈调节作用,血液中的激素经常维持在正常的相对稳定的水平。 下丘脑是机体调节内分泌活动的枢纽。
激素调节是通过改变细胞代谢而发挥作用。
生长激素与甲状腺激素;血糖调节。
动物——神经 生命活动调节主要是由神经调节来完成。
神经调节基本方式——反射。
反射活动结构基础——反射弧
兴奋传导形式——神经冲动。
兴奋传导:神经纤维上传导;细胞间传递
神经调节以反射方式实现;体液调节是激素随血液循环输送到全身来调节。体内大多数内分泌腺受中枢神经系统控制,分泌的激素可以影响神经系统的功能。 反射活动——非条件反射、条件反射。
条件反射大大地提高了动物适应复杂环境变化的能力。
神经中枢功能——分析和综合
神经纤维上传导——电位变化、双向
细胞间传递——突触、单向
动物——行为 动物行为是在神经系统、内分泌系统、运动器官共同调节作用下形成的。
行为受激素、神经调节控制。
先天性行为:趋性、本能、非条件反射
后天性行为:印随、模仿、条件反射
动物建立后天性行为主要方式:条件反射
动物后天性行为最高级形式:判断、推理
高等动物的复杂行为主要通过学习形成。 神经系统的调节作用处主导地位。
性激素与性行为之间有直接联系。
垂体分泌的促性腺激素能促进性腺发育和性激素分泌,进而影响动物性行为。
大多数本能行为比反射行为复杂。(迁徙、织网、哺乳)
生活体验和学习对行为的形成起决定作用。
判断、推理是通过学习获得。
学习主要是与大脑皮层有关。
生物的生殖和发育
生殖 无性生殖、有性生殖
有性生殖使产生的后代具备了双亲的遗传特性,具有更强的生活能力和变异性,对生物的生存和进化具有重要意义。 单子叶:玉米、小麦、水稻
双子叶:豆类(花生、大豆)、黄瓜、荠菜
减数分裂和受精作用维持每种生物前后代体细胞中染色体数目的恒定,具有遗传和变异作用。
个体发育 从受精卵开始发育到性成熟个体的过程。
植物个体发育 花芽形成标志生殖生长的开始。 受精卵经过短暂休眠;受精极核不经休眠。
胚柄产生激素类物质,促进胚体发育。
动物个体发育 胚胎发育、胚后发育
含色素的动物极总是朝上,保证胚胎发育所需的温度条件。
生物的个体发育是系统发育短暂而迅速的重演。 爬行类、鸟类、哺乳类的胚胎发育早期具有羊膜结构,保证了胚胎发育所需的水环境,具有防震和保护作用,增强了对陆地环境的适应能力。
遗传和变异
遗传物质基础 DNA的探索:
转化因子的发现→转化因子是DNA→DNA是遗传物质→DNA是主要遗传物质
DNA复制是边解旋边复制的过程。
复制方式——半保留复制。
基因的本质是具有遗传效应的DNA片段
基因是决定生物性状的基本单位。
基因对性状的控制:
1 通过控制酶的合成来控制代谢过程;
2 通过控制蛋白质分子结构来直接影响 脱氧核苷酸是构成DNA的基本单位。
染色体是遗传物质的主要载体。
DNA分子结构:DNA双螺旋结构
碱基互补配对原则
碱基不同排列构成了DNA的多样性,也说明了生物体具有多样性和特异性的原因。
DNA双螺旋结构和碱基互补配对原则保证了复制能够精确、准确地进行,保持了遗传的连续性。
各种生物都公用同一套遗传密码。
中心法则的书写。
一个性状可由多个基因控制。
生物变异 不可遗传:不引起体内遗传物质变化
可遗传:基因突变、基因重组、染色体变异
多倍体产生原因,是体细胞在有丝分裂过程中,染色体完成了复制,但受外界影响,使纺锤体形成受破坏,从而染色体加倍。 基因突变是生物变异的根本来源,为生物进化提供了最初的原材料。
通过有性生殖过程实现的基因重组,为生物变异提供了极其丰富的来源,是形成生物多样性的 重要原因之一。
多倍体育种营养物质增加,但发育延迟、结实少。
单倍体育种可以在短时间内得到一个稳定的纯系品种,明显缩短了育种年限。
优生措施 禁止近亲结婚;遗传咨询;适龄生育;产前诊断。
生物进化
进化基本单位---——种群
进化实质——种群基因频率的改变
突变和基因重组只是产生生物进化的原材料,不能决定生物进化方向。
生物进化方向由自然选择决定。
不同种群之间一旦产生生殖隔离,就不会有基因交流。 突变和基因重组是生物进化的原材料;
自然选择决定生物进化方向;
隔离是新物种形成必要条件。
生物与环境
生态因素 非生物因素
光:光对植物的生理和分布起着决定性作用。
光对动物的影响很明显。(繁殖活动)
温度:温度对生物分布、生长、发育的影响
水:决定陆地生物分布的重要因素。 生物因素
种内关系:种内互助、种内斗争
种间关系:互利共生、寄生、竞争、捕食
种群 特征:种群密度、出生率和死亡率、年龄组成、性别比例。
数量变化:“J”曲线、“S”曲线。
研究数量变化意义:在野生生物资源的合理利用和保护、害虫防治方面。 影响种群变化因素:气候、食物、被捕食、传染病。
人类活动对自然界中种群数量变化的影响越来越大。
生物群落 垂直结构、水平结构
生态系统 结构
成分:非生物的物质和能量;生产者;消费者;分解者。
成分间联系——食物链、食物网
生产者固定的太阳能的总量是流经该系统的总能量。
能量流动特点:单向流动、逐级递减
物质循环和能量流动沿着食物链、网进行的。
据此实现对能量的多极利用,从而大大提高能量利用效率。
能量流动和物质循环是生态系统的主要功能。
生态系统稳定性 生态系统的自动调节能力是有一定限度。
一个生态系统,抵抗力稳定性与恢复力稳定性之间往往存在相反的关系。 生态系统成分越单纯,营养结构越简单,自动调节能力越低,抵抗力稳定性越低
如果有啥生物上的难题,欢迎来到“高中生物吧”O(∩_∩)O~:http://tieba.baidu.com/f?kw=%B8%DF%D6%D0%C9%FA%CE%EF%20&t=4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高中生物必修1教案 《分子与细胞》 元素 细胞膜 基质 化学成分 结构与功能 细胞质 化合物 细胞核 细胞器 细胞 生物膜系统 有丝分裂 无丝分裂 细胞分裂 细胞分化 细胞工程 减数分裂 高一生物内容构成 (一)走近细胞 一、 比较原核与真核细胞(多样性) 原核细胞 真核细胞 细胞 较小(1—10um) 较大(10--100 um) 细胞核 无成形的细胞核,核物质集中在核区。无核膜,无核仁。DNA不和蛋白质结合 有成形的真正的细胞核。有核膜,有核仁。DNA不和蛋白质结合成染色体 细胞质 除核糖体外,无其他细胞器 有各种细胞器 细胞壁 有。但成分和真核不同,主要是肽聚糖 植物细胞、真菌细胞有,动物细胞无 代表 放线菌、细菌、蓝藻、支原体 真菌、植物、动物 二、生命系统的层次性 植:营养、保护、机械、输导 植:根、茎、叶 细胞 组织 分泌 器官 花、果、种 动:上皮、结缔、肌肉、神经 动:心、肝…… 运动、循环 消化、呼吸 病毒 系统(动) 个体 单细胞 种群 群落 泌尿、生殖 多细胞 神经、内分泌 非生物因素 Ⅰ号 生态系统 生产者 生物圈 生物因素 消费者 Ⅱ号 分解者 三、细胞学说内容(统一性) ○从人体的解剖和观察入手:维萨里、比夏 ○显微镜下的重要发明:虎克、列文虎克 ○理论思维和科学实验的结合:施来登、施旺 1. 细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所构成。 2. 细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。 3. 新细胞可以从老细胞中产生。 ○在修正中前进:细胞通过分裂产生新的细胞。 注:现代生物学的三大基石 1.1838—1839年 细胞学说 2.1859年 达尔文 进化论 3.1866年 孟德尔 遗传学 四、结论 除病毒以外,细胞是生物体结构和功能的基本单位,也是地球上最基本的生命系统。 (二)组成细胞的分子 基本:C、H、O、N (90%) 大量:C、H、O、N、P、S、(97%)K、Ca、Mg 元素 微量:Fe、Mo、Zn、Cu、B、Mo等 (20种) 最基本:C,占干重的48.4%,生物大分子以碳链为骨架 物质 说明生物界与非生物界的统一性和差异性。 基础 水:主要组成成分;一切生命活动离不开水 无机物 无机盐:对维持生物体的生命活动有重要作用 化合物 蛋白质:生命活动(或性状)的主要承担者/体现者 核酸:携带遗传信息 有机物 糖类:主要的能源物质 脂质:主要的储能物质 一、蛋白质 (占鲜重7-10%,干重50%) 结构 元素组成 C、H、O、N,有的还有P、S、Fe、Zn、Cu、B、Mn、I等 单体 氨基酸 (约20种,必需8种,非必需12种) 化学结构 由多个氨基酸分子脱水缩合而成,含有多个肽键的化合物,叫多肽。
多肽呈链状结构,叫肽链。一个蛋白质分子含有一条或几条肽链。 高级结构 多肽链形成不同的空间结构,分二、三、四级。 结构特点 由于组成蛋白质的氨基酸的种类、数目、排列次序不同,于是肽链的空间结构千差万别,因此蛋白质分子的结构是极其多样的。 功能 ○蛋白质的结构多样性决定了它的特异性/功能多样性。 1. 构成细胞和生物体的重要物质:如细胞膜、染色体、肌肉中的蛋白质; 2. 有些蛋白质有催化作用:如各种酶; 3. 有些蛋白质有运输作用:如血红蛋白、载体蛋白; 4. 有些蛋白质有调节作用:如胰岛素、生长激素等; 5. 有些蛋白质有免疫作用:如抗体。 备注 ○连接两个氨基酸分子的键(—NH—CO—)叫肽键。 ○各种蛋白质在结构上所具有的共同特点(通式): 1. 每种氨基酸至少都含有一个氨基和一个羧基连同一碳原子上; 2. 各种氨基酸的区别在于R基的不同。 ○ 变性(熟鸡蛋)&盐析&凝固(豆腐) 计算 ○由N个aa形成的一条肽链围成环状蛋白质时,产生水/肽键 N 个; ○N个aa形成一条肽链时,产生水/肽键 N-1 个; ○N个aa形成M条肽链时,产生水/肽键 N-M 个; ○N个aa形成M条肽链时,每个aa的平均分子量为α,那么由此形成的蛋白质 的分子量为 N×α-(N-M)×18 ; 二、核酸 一切生物的遗传物质,是遗传信息的载体,是生命活动的控制者。 元素组成 C、H、O、N、P等 分类 脱氧核糖核酸(DNA双链) 核糖核酸(RNA单链) 单体 成分 磷酸 H3PO4 五碳糖 脱氧核糖 核糖 含氮 碱基 A、G、C、T A、G、C、U 功能 主要的遗传物质,编码、复制遗 传信息,并决定蛋白质的合成 将遗传信息从DNA传递给 蛋白质。 存在 主要存在于细胞核,少量在线粒 体和叶绿体中。甲基绿 主要存在于细胞质中。吡罗红 △ 每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体。 三、糖类和脂质 元素 类别 存在 生理功能 糖类 C、H、O 单糖 核糖C5H10O5 主细胞质 核糖核酸的组成成分; 脱氧核糖C4H10O5 主细胞核 脱氧核糖核酸的组成成分; 六碳糖:葡萄糖 C6H12O6、果糖等 主细胞质 是生物体进行生命活动的重要能源物质(70%以上); 二糖 C12H22O11 麦芽糖、蔗糖 植物 乳糖 动物 多糖 淀粉、纤维素 植物 (细胞壁的组成成分), 重要的储存能量的物质; 糖原(肝、肌) 动物 脂质 C、H、O 有的 还有N、P 脂肪 动、植物 储存能量、维持体温恒定; 类脂/磷脂 脑、豆 构成生物膜的重要成分; 固醇 胆固醇 动物 动物的重要成分; 性激素 促性器官发育和第二性征; 维生素D 促进钙、磷的吸收和利用; △ 组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。 四、鉴别实验 试剂 成分 实验现象 常用材料 蛋白质 双缩脲 A: 0.1g/mL NaOH 紫色 大豆 鸡蛋 B: 0.01g/mL CuSO4 脂肪 苏丹Ⅲ 橘黄色 花生 还原糖 班氏(加热) 砖红色沉淀 苹果、梨、白萝卜 淀粉 碘液 I2 蓝色 马铃薯 ○具有还原性的糖:葡萄糖、麦芽糖、果糖 五、无机物 存在方式 生理作用 水 结合水4.5% 自由水95% 部分水和细胞中 其他物质结合。 细胞结构的组成成分。 绝大部分的水以 游离形式存在,可以自由流动。 1.细胞内的良好溶剂; 2.参与细胞内许多生物化学反应; 3.水是细胞生活的液态环境; 4.水的流动,把营养物质运送到细胞,并把废物运送到排泄器官或直接排出; 无机盐 多数以离子状态存,如K+、 Ca2+、Mg2+、Cl--、PO2+等 1.细胞内某些复杂化合物的重要组成部分,如Fe2+是血红蛋白的主要成分; 2.持生物体的生命活动,细胞的形态和功能; 3.维持细胞的渗透压和酸碱平衡; 六、小结 化合 有机组合 分化 化学元素 化合物 原生质 细胞 ○原生质 1.泛指细胞内的全部生命物质,但并不包括细胞内的所有物质,如细胞壁; 2.包括细胞膜、细胞质和细胞核三部分;其主要成分为核酸、蛋白质(和脂类); 3.动物细胞可以看作一团原生质。 ○细胞质 : 指细胞中细胞膜以内、细胞核以外的全部原生质。 ○原生质层:成熟的植物细胞的细胞膜、液泡膜以及两层膜之间的细胞质,为一层半透膜。 (三)细胞的基本结构 细胞壁(植物特有): 纤维素+果胶,支持和保护作用 成分:脂质(主磷脂)50%、蛋白质约40%、糖类2%-10% 细胞膜 作用:隔开细胞和环境;控制物质进出;细胞间信息交流; 真核 基质: 有水、无机盐、脂质、糖类、氨基酸、核苷酸和多种酶等 细胞 细胞质 是活细胞进行新陈代谢的主要场所。 分工:线、内、高、核、溶、中、叶、液、 细胞器 协调配合:分泌蛋白的合成与分泌;生物膜系统 核膜:双层膜,分开核内物质和细胞质 核孔:实现核质之间频繁的物质交流和信息交流 细胞核 核仁:与某种RNA的合成以及核糖体的形成有关 染色质:由DNA和蛋白质组成,DNA是遗传信息的载体 一、 细胞器 差速离心:美国 克劳德 线粒体 叶绿体 高尔基体 内质网 液泡 核糖体 中心体 分布 动植物 植物 动植物 动植物 植物和某 些原生动物 动植物 动物 低等植物 形态 椭球形、棒形 扁平的球形或椭球形 大小囊泡、扁平囊 网状 椭球形粒状小体 结构 双层膜,有少量DNA 单层膜,形成囊泡状和管状,内有腔 没有膜结构 嵴(TP酶复合体)、基粒、基质 基粒(类体)、基质(片层结构)、酶 外连细胞膜,内连核膜 液泡膜、细胞液 蛋白质、RNA、和酶 两个互相垂直的中心粒 功能 有氧呼吸的主场所 进行光合作用的场所 细胞分泌, 成细胞壁 提供合成、运输条件 贮存物质,调节内环境 蛋白质合成的场所 与有丝分裂有关 备注 在核仁 形成 △ 细胞器是指在细胞质中具有一定形态结构和执行一定生理功能的结构单位, 三、协调配合 分泌蛋白 放射性同位素示踪法:罗马尼亚 帕拉德 有机物、O2 叶绿体 线粒体 能量、CO2 基因调控 初步合成 加工 修饰 细胞核 核糖体 内质网 高尔基体 细胞膜 胞外 氨基酸 肽链 一定空间结构 ○生物膜系统:细胞器膜 + 细胞膜 + 核膜等形成的结构体系 四、细胞核 = 核膜(双层) + 核仁 + 染色质 + 核液 美西螈实验、蝾螈横缢实验、变形虫实验、伞藻嫁接与移植实验 细胞核是遗传信息储存和复制的场所,是代谢活动和遗传特性的控制中心。 ○ 染色质和染色体是同一物质在细胞周期不同阶段相互转变的形态结构。 DNA 螺旋 ○ + = 核小体(串珠结构) 染色质 30nm纤维 组蛋白 非组蛋白 螺旋化 0.4um超螺旋管(圆筒形) 2-10um染色单体(圆柱状、杆状) 二、树立观点(基本思想) 1.有一定的结构就必然有与之相对应功能的存在; ○结构和功能相统一 2.任何功能都需要一定的结构来完成 1.各种细胞器既有形态结构和功能上的差异,又相互联系,相互依存; ○分工合作 2.细胞的生物膜系统体现细胞各结构之间的协调配合。 ○生物的整体性:整体大于各部分之和;只有在各部分组成一个整体的时才能体现出生命现象。 1.结构:细胞的各个部分是相互联系的。如分布在细胞质的内质网内连核膜,外接细胞膜。2.功能:细胞的不同结构有不同的生理功能,但却是协调配合的。如分泌蛋白的合成与分泌。 3.调控:细胞核是代谢的调控中心。其DNA通过控制蛋白质类物质的合成调控生命活动。 4.与外界的关系上:每个细胞都要与相邻细胞、而与外界环境直接接触的细胞都要和外界环境进行物质交换和能量转换。 六、总结 细胞既是生物体结构的基本单位,也是生物体代谢和遗传的基本单位。 (四)细胞物质的运输 ○科学家研究细胞膜结构的历程是从物质跨膜运输的现象开始的,分析成分是了解结构的基础,现象和功能又提供了探究结构的线索。人们在实验观察的基础上提出假说,又通过进一步的实验来修正假说,其中方法与技术的进步起到关键的作用 成分:磷脂和蛋白质和糖类 结构:单位膜(三明治)→ 流动镶嵌模型 细胞膜 特性 结构特点:具有相对的流动性 生理特性:选择透过性(对离子和小分子物质具选择性) 保护作用 功能 控制细胞内外物质交换 细胞识别、分泌、排泄、免疫等 一、物质跨膜运输的实例 1.水分 条件 浓度 外液 > 细胞质/液 外液 < 细胞质/液 现象 动物 失水皱缩 吸水膨胀甚至涨破 植物 质壁分离 质壁分离复原 原理 外因 水分的渗透作用 内因 原生质层与细胞壁的伸缩性不同造成收缩幅度不同 结论 细胞的吸水和失水是水分顺相对含量梯度跨膜运输的过程 ○ 渗透现象发生的条件:半透膜、细胞内外浓度差 ○ 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。 ○ 半透膜:指一类可以让小分子物质通过而大分子物质不能通过的一类薄膜的总称。 ○ 质壁分离与复原实验可拓展应用于:(指的是原生质层与细胞壁) ①证明成熟植物细胞发生渗透作用; ②证明细胞是否是活的; ③作为光学显微镜下观察细胞膜的方法; ④初步测定细胞液浓度的大小; 2. 无机盐等其他物质 ① 不同生物吸收无机盐的种类和数量不同。 ② 物质跨膜运输既有顺浓度梯度的,也有逆浓度梯度的。 3. 选择透过性膜 可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子、小分子和大分子则不能通过的膜。 □ 生物膜是一种选择透过性膜,是严格的半透膜。 二、流动镶嵌模型 1.要点 ①磷脂双分子层 构成生物膜的基本支架,但这个支架不是静止的,它具有流动性。 ②蛋白质 镶嵌、贯穿、覆盖在磷脂双分子层上,大多数蛋白质也是可以流动的。 ③天然糖蛋白 蛋白质和糖类结合成天然糖蛋白,形成糖被具有保护、润滑和细胞识别等 2.与单位膜的异同 相同点:组成细胞膜的主要物质是脂质和蛋白质 不同点:①流:蛋白质的分布有不均匀和不对称性;强调组成膜的分子是运动的。 ②单:蛋白质均匀分布在脂双层的两侧;认为生物膜是静止结构。 三、跨膜运输的方式 例子|方式| 浓度梯度| 载体| 能量| 作用 水、甘油、气体、乙醇、苯| 自由扩散| 顺 ×| ×| 被选择吸收的物质从高浓度的一侧通过细胞膜向浓度低的一侧转运 葡萄糖进入红细胞| 协助扩散| 顺| √| × 进入红细胞的钾离子 |主动运输| 逆| √| √| 能保证活细胞按照生命活动的需要,主动地选择吸收所需要 的物质,排出新陈代谢产生的废物和对细胞要害的物质。 ○大分子或颗粒:胞吞、胞吐 四、小结 组成 决定 磷脂分子+蛋白质分子 结构 功能(物质交换) 具有 导致 保证 体现 运动性 流动性 物质交换正常 选择透过性 成分组成结构,结构决定功能。构成细胞膜的磷脂分子和蛋白质分子大都是可以流动的,因此决定了由它们构成的细胞膜的结构具有一定的流动性。结构的流动性保证了载体蛋白能把相应的物质从细胞膜的一侧转运到到另一侧。由于细胞膜上不同载体的数量不同,所以,当物质进出细胞时能体现出不同的物质进出细胞膜的数量、速度及难易程度的不同,即反映出物质交换过程中的选择透过性。可见,流动性是细胞膜结构的固有属性,无论细胞是否与外界发生物质交换关系,流动性总是存在的,而选择透过性是细胞膜生理特性的描述,这一特性,只有在流动性基础上,完成物质交换功能方能体现出来。 (五)细胞的能量供应和利用 H2O 外界 水 H2O O2 矿质元素 [H] 光 ATP 原生质 ADP+PI 热能 ATP ADP+PI CO2+H2O C3H6O3 C2H5OH+CO2 一、 酶——降低反应活化能 ◎ 新陈/细胞代谢:活细胞内全部有序化学反应的总称。 ◎ 活化能:分子从常态转变成容易发生化学反应的活跃状态所需要的能量。 1. 发现 ①巴斯德之前:发酵是纯化学反应,与生命活动无关。 ②巴斯德(法、微生物学家):发酵与活细胞有关;发酵是整个细胞。 ③利比希(德、化学家):引起发酵的是细胞中的某些物质,但这些物质只有在酵母细胞死亡并裂解后才能发挥作用。 ④比希纳(德、化学家):酵母细胞中的某些物质能够在酵母细胞破碎后继续起催化作用,就像在活酵母细胞中一样。 ⑤萨姆纳(美、科学家):从刀豆种子提纯出来的脲酶是一种蛋白质。 ⑥许多酶是蛋白质。 ⑦切赫与奥特曼(美、科学家):少数RNA具有生物催化功能。 2.定义 酶是活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质。 注: ①由活细胞产生(与核糖体有关) ②催化性质:A.比无机催化剂更能减低化学反应的活化能,提高化学反应速度。 B.反应前后酶的性质和数量没有变化。 ③成分:绝大多数酶是蛋白质,少数酶是RNA。 3.特性 ① 高效性:催化效率很高,使反应速度很快,是一般无机催化集的107——1013倍。 ② 专一性:每一种酶只能催化一种或一类化学反应。 → 多样性 。 ③ 需要合适的条件(温度和pH值) → 温和性 → 易变性 。 酶的催化作用需要适宜的温度、pH值等,过酸、过碱、高温都会破坏酶分子结构。低温也会影响酶的活性,但不破坏酶的分子结构。 解析 在底物足够,其他因素固定的条件下,酶促反应的速度与酶浓度成正比。 1.在S较低时,V随S增加而加快,近乎成正比; 2.在S较低时,V随S增加而加快,但不显著; 3.当S很大且达到一定限度时,V也达到一个最大值,此时即使再增加S,反应也几乎不再改变。 1.在一定T内V随T的 升高而加快; 2.在一定条件下,每一种酶在某一T时活力最大,称最适温度; 3.当T升高到一定限度时,V反而随温度的升高而降低。 ◎动物T:35—40℃ PH : 6.5—8.0 ◎ 酶工程 生产提取 制成 酶制剂 应用 治疗疾病;加工和生产一些产品; 和分离纯化 固定化酶 化验诊断和水质检测;其他分支。 二、ATP(三磷酸腺苷) ◎ ATP是生物体细胞内普遍存在的一种高能磷酸化合物,是生物体进行各项生命活动的直接 能源,它的水解与合成存在着能量的释放与贮存。 1.结构简式 A — P ~ P ~ P 腺苷 普通化学键13.8KJ/mol 高能磷酸键 30.54 KJ/mol 磷酸基团 2.ATP与ADP的转化 ATP 呼吸作用 (线粒体) 吸 Pi (细胞质基质) 能 吸收分泌(渗透能) (叶绿体) 放 肌肉收缩(机械能) 光合作用 Pi 能 神经传导、生物电(电能) ADP (每个活细胞) 合成代谢(化学能) 体温(热能) 萤火虫(光能) ◎ 糖类—主要能源物质 热能 散失 太阳光能 脂肪—主要储能物质 氧化 (直接能源) 蛋白质—能源物质之一 分解 化学能 ATP 水解酶、放 ◎ ATP ADP + Pi + 能量 合成酶、吸 3.能产生ATP: 线粒体、叶绿体、细胞质基质 能产生水: 线粒体、叶绿体、核糖体、细胞核 能碱基互补配对: 线粒体、叶绿体、核糖体、细胞核 三、ATP的主要来源——细胞呼吸 ◎呼吸是通过呼吸运动吸进氧气,排出二氧化碳的过程。 ◎细胞呼吸是指有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出能量并生成ATP的过程。分为: 有氧呼吸 无氧呼吸 概念 指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放能量,生成许多ATP的过程。 指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物分解成不彻底的氧化产物,同时释放出少量能量的过程。 过程 ① C6H12O6 → 2丙酮酸 + [H] + 2ATP ② 2丙酮酸+ 6H2O → 6CO2 + [H]+ 2ATP ③ [H] + 6O2 → 12H2O + 34ATP ① C6H12O6 → 2丙酮酸 + [H] + 2ATP → 2C3H6O3 ② 2丙酮酸 → 2C2H5OH + 2CO2 反应式 C6H12O6+6H2O+6O2→6CO2 + 12H2O + 38ATP C6H12O6 → 2C3H6O3 + 2ATP → 2C2H5OH + 2CO2 + 2ATP 不同点 场所 : ①②线粒体基质 ③内膜 始终在细胞质基质 条件 : 除①外,需分子氧、酶 不需分子氧、需酶 产物 : CO2 、H2O 酒精和CO2或乳酸 能量 : 大量、合成38ATP(1161KJ) 少量、合成2ATP(61.08KJ) 相同点 联系 : 从葡萄糖分解成丙酮酸阶段相同,以后阶段不同 实质 : 分解有机物,释放能量,合成ATP 意义 : 为生物体的各项生命活动提供能量;为体内其他化合物合成提供原料 ◎比较 光合作用 呼吸作用 反应场所 绿色植物(在叶绿体中进行) 所有生物(主要在线粒体中进行) 反应条件 光、色素、酶 酶(时刻进行) 物质转变 把无机物CO2和H2O合成有机物(CH2O) 分解有机物产生CO2和H2O 能量转变 把光能转变成化学能储存在有机物中 释放有机物的能量,部分转移ATP 实质 合成有机物、储存能量 分解有机物、释放能量、产生ATP 联系 有机物、氧气 光合作用 呼吸作用 能量、二氧化碳 ◎ 光合作用的实质 通过光反应把光能转变成活跃的化学能,通过暗反应把二氧化碳和水合成有机物,同时把活跃的化学能转变成稳定的化学能贮存在有机物中。 四、光和光合作用 ◎光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的 有机物,并释放出氧气的过程。影响因素有:光、温度、CO2浓度、水分、矿质元素等。 1.发现 内容 时间 过程 结论 普里斯特 1771年 蜡烛、小鼠、绿色植物实验 植物可以更新空气 萨克斯 1864年 叶片遮光实验 绿色植物在光合作用中产生淀粉 恩格尔曼 1880年 水绵光合作用实验 叶绿体是光合作用的场所释放出氧。 鲁宾与卡门 1939年 同位素标记法 光合作用释放的氧全来自水 2.场所 双层膜 叶绿体 基质 基粒 多个类囊体(片层)堆叠而成 胡萝卜素(橙黄色)1/3 类胡萝卜素 叶黄素(黄色) 2/3 吸蓝紫光 色素 (1/4) 叶绿素A(蓝绿色)3/4 叶绿素(3/4) 叶绿素B(黄绿色)1/4 吸红橙和蓝紫光 3.过程 光反应 暗反应 条件 光、色素、酶 CO2、[H]、ATP、酶 时间 短促 较缓慢 场所 内囊体的薄膜 叶绿体的基质 过程 ① 水的光解 2H2O → 4[H] + O2 ② ATP的合成/光合磷酸化 ADP + Pi + 光能 → ATP ① CO2的固定 CO2 + C5 → 2C3 ② C3/ CO2的还原 2C3 + [H] →(CH2O) 实质 光能 → 化学能,释放O2 同化CO2,形成(CH2O) 总式 CO2 + H2O → (CH2O)+ O2 或 CO2 + 12H2O → (CH2O)6 + 6O2 + 6H2O 物变 无机物CO2、H2O → 有机物(CH2O) 能变 光能 → ATP中活跃的化学能 → 有机物中稳定的化学能 ◎ 同位素示踪 14C 光反应 2C 3 暗反应 (14CH2O) 3H2O 固定 [3H] 还原 (C3H2O) H218O 光 18O2 ◎ 人为创设条件,看物质变化: 1. 光照 → [H]和ATP → 暗反应 → (CH2O) ↓ ↓ ↓ ↓ 切断 → 不能生成 → 不能进行 → 不能生成 2. CO2 → C5 → C3 → (CH2O) ↓ ↓ ↓ ↓
多肽呈链状结构,叫肽链。一个蛋白质分子含有一条或几条肽链。 高级结构 多肽链形成不同的空间结构,分二、三、四级。 结构特点 由于组成蛋白质的氨基酸的种类、数目、排列次序不同,于是肽链的空间结构千差万别,因此蛋白质分子的结构是极其多样的。 功能 ○蛋白质的结构多样性决定了它的特异性/功能多样性。 1. 构成细胞和生物体的重要物质:如细胞膜、染色体、肌肉中的蛋白质; 2. 有些蛋白质有催化作用:如各种酶; 3. 有些蛋白质有运输作用:如血红蛋白、载体蛋白; 4. 有些蛋白质有调节作用:如胰岛素、生长激素等; 5. 有些蛋白质有免疫作用:如抗体。 备注 ○连接两个氨基酸分子的键(—NH—CO—)叫肽键。 ○各种蛋白质在结构上所具有的共同特点(通式): 1. 每种氨基酸至少都含有一个氨基和一个羧基连同一碳原子上; 2. 各种氨基酸的区别在于R基的不同。 ○ 变性(熟鸡蛋)&盐析&凝固(豆腐) 计算 ○由N个aa形成的一条肽链围成环状蛋白质时,产生水/肽键 N 个; ○N个aa形成一条肽链时,产生水/肽键 N-1 个; ○N个aa形成M条肽链时,产生水/肽键 N-M 个; ○N个aa形成M条肽链时,每个aa的平均分子量为α,那么由此形成的蛋白质 的分子量为 N×α-(N-M)×18 ; 二、核酸 一切生物的遗传物质,是遗传信息的载体,是生命活动的控制者。 元素组成 C、H、O、N、P等 分类 脱氧核糖核酸(DNA双链) 核糖核酸(RNA单链) 单体 成分 磷酸 H3PO4 五碳糖 脱氧核糖 核糖 含氮 碱基 A、G、C、T A、G、C、U 功能 主要的遗传物质,编码、复制遗 传信息,并决定蛋白质的合成 将遗传信息从DNA传递给 蛋白质。 存在 主要存在于细胞核,少量在线粒 体和叶绿体中。甲基绿 主要存在于细胞质中。吡罗红 △ 每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体。 三、糖类和脂质 元素 类别 存在 生理功能 糖类 C、H、O 单糖 核糖C5H10O5 主细胞质 核糖核酸的组成成分; 脱氧核糖C4H10O5 主细胞核 脱氧核糖核酸的组成成分; 六碳糖:葡萄糖 C6H12O6、果糖等 主细胞质 是生物体进行生命活动的重要能源物质(70%以上); 二糖 C12H22O11 麦芽糖、蔗糖 植物 乳糖 动物 多糖 淀粉、纤维素 植物 (细胞壁的组成成分), 重要的储存能量的物质; 糖原(肝、肌) 动物 脂质 C、H、O 有的 还有N、P 脂肪 动、植物 储存能量、维持体温恒定; 类脂/磷脂 脑、豆 构成生物膜的重要成分; 固醇 胆固醇 动物 动物的重要成分; 性激素 促性器官发育和第二性征; 维生素D 促进钙、磷的吸收和利用; △ 组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。 四、鉴别实验 试剂 成分 实验现象 常用材料 蛋白质 双缩脲 A: 0.1g/mL NaOH 紫色 大豆 鸡蛋 B: 0.01g/mL CuSO4 脂肪 苏丹Ⅲ 橘黄色 花生 还原糖 班氏(加热) 砖红色沉淀 苹果、梨、白萝卜 淀粉 碘液 I2 蓝色 马铃薯 ○具有还原性的糖:葡萄糖、麦芽糖、果糖 五、无机物 存在方式 生理作用 水 结合水4.5% 自由水95% 部分水和细胞中 其他物质结合。 细胞结构的组成成分。 绝大部分的水以 游离形式存在,可以自由流动。 1.细胞内的良好溶剂; 2.参与细胞内许多生物化学反应; 3.水是细胞生活的液态环境; 4.水的流动,把营养物质运送到细胞,并把废物运送到排泄器官或直接排出; 无机盐 多数以离子状态存,如K+、 Ca2+、Mg2+、Cl--、PO2+等 1.细胞内某些复杂化合物的重要组成部分,如Fe2+是血红蛋白的主要成分; 2.持生物体的生命活动,细胞的形态和功能; 3.维持细胞的渗透压和酸碱平衡; 六、小结 化合 有机组合 分化 化学元素 化合物 原生质 细胞 ○原生质 1.泛指细胞内的全部生命物质,但并不包括细胞内的所有物质,如细胞壁; 2.包括细胞膜、细胞质和细胞核三部分;其主要成分为核酸、蛋白质(和脂类); 3.动物细胞可以看作一团原生质。 ○细胞质 : 指细胞中细胞膜以内、细胞核以外的全部原生质。 ○原生质层:成熟的植物细胞的细胞膜、液泡膜以及两层膜之间的细胞质,为一层半透膜。 (三)细胞的基本结构 细胞壁(植物特有): 纤维素+果胶,支持和保护作用 成分:脂质(主磷脂)50%、蛋白质约40%、糖类2%-10% 细胞膜 作用:隔开细胞和环境;控制物质进出;细胞间信息交流; 真核 基质: 有水、无机盐、脂质、糖类、氨基酸、核苷酸和多种酶等 细胞 细胞质 是活细胞进行新陈代谢的主要场所。 分工:线、内、高、核、溶、中、叶、液、 细胞器 协调配合:分泌蛋白的合成与分泌;生物膜系统 核膜:双层膜,分开核内物质和细胞质 核孔:实现核质之间频繁的物质交流和信息交流 细胞核 核仁:与某种RNA的合成以及核糖体的形成有关 染色质:由DNA和蛋白质组成,DNA是遗传信息的载体 一、 细胞器 差速离心:美国 克劳德 线粒体 叶绿体 高尔基体 内质网 液泡 核糖体 中心体 分布 动植物 植物 动植物 动植物 植物和某 些原生动物 动植物 动物 低等植物 形态 椭球形、棒形 扁平的球形或椭球形 大小囊泡、扁平囊 网状 椭球形粒状小体 结构 双层膜,有少量DNA 单层膜,形成囊泡状和管状,内有腔 没有膜结构 嵴(TP酶复合体)、基粒、基质 基粒(类体)、基质(片层结构)、酶 外连细胞膜,内连核膜 液泡膜、细胞液 蛋白质、RNA、和酶 两个互相垂直的中心粒 功能 有氧呼吸的主场所 进行光合作用的场所 细胞分泌, 成细胞壁 提供合成、运输条件 贮存物质,调节内环境 蛋白质合成的场所 与有丝分裂有关 备注 在核仁 形成 △ 细胞器是指在细胞质中具有一定形态结构和执行一定生理功能的结构单位, 三、协调配合 分泌蛋白 放射性同位素示踪法:罗马尼亚 帕拉德 有机物、O2 叶绿体 线粒体 能量、CO2 基因调控 初步合成 加工 修饰 细胞核 核糖体 内质网 高尔基体 细胞膜 胞外 氨基酸 肽链 一定空间结构 ○生物膜系统:细胞器膜 + 细胞膜 + 核膜等形成的结构体系 四、细胞核 = 核膜(双层) + 核仁 + 染色质 + 核液 美西螈实验、蝾螈横缢实验、变形虫实验、伞藻嫁接与移植实验 细胞核是遗传信息储存和复制的场所,是代谢活动和遗传特性的控制中心。 ○ 染色质和染色体是同一物质在细胞周期不同阶段相互转变的形态结构。 DNA 螺旋 ○ + = 核小体(串珠结构) 染色质 30nm纤维 组蛋白 非组蛋白 螺旋化 0.4um超螺旋管(圆筒形) 2-10um染色单体(圆柱状、杆状) 二、树立观点(基本思想) 1.有一定的结构就必然有与之相对应功能的存在; ○结构和功能相统一 2.任何功能都需要一定的结构来完成 1.各种细胞器既有形态结构和功能上的差异,又相互联系,相互依存; ○分工合作 2.细胞的生物膜系统体现细胞各结构之间的协调配合。 ○生物的整体性:整体大于各部分之和;只有在各部分组成一个整体的时才能体现出生命现象。 1.结构:细胞的各个部分是相互联系的。如分布在细胞质的内质网内连核膜,外接细胞膜。2.功能:细胞的不同结构有不同的生理功能,但却是协调配合的。如分泌蛋白的合成与分泌。 3.调控:细胞核是代谢的调控中心。其DNA通过控制蛋白质类物质的合成调控生命活动。 4.与外界的关系上:每个细胞都要与相邻细胞、而与外界环境直接接触的细胞都要和外界环境进行物质交换和能量转换。 六、总结 细胞既是生物体结构的基本单位,也是生物体代谢和遗传的基本单位。 (四)细胞物质的运输 ○科学家研究细胞膜结构的历程是从物质跨膜运输的现象开始的,分析成分是了解结构的基础,现象和功能又提供了探究结构的线索。人们在实验观察的基础上提出假说,又通过进一步的实验来修正假说,其中方法与技术的进步起到关键的作用 成分:磷脂和蛋白质和糖类 结构:单位膜(三明治)→ 流动镶嵌模型 细胞膜 特性 结构特点:具有相对的流动性 生理特性:选择透过性(对离子和小分子物质具选择性) 保护作用 功能 控制细胞内外物质交换 细胞识别、分泌、排泄、免疫等 一、物质跨膜运输的实例 1.水分 条件 浓度 外液 > 细胞质/液 外液 < 细胞质/液 现象 动物 失水皱缩 吸水膨胀甚至涨破 植物 质壁分离 质壁分离复原 原理 外因 水分的渗透作用 内因 原生质层与细胞壁的伸缩性不同造成收缩幅度不同 结论 细胞的吸水和失水是水分顺相对含量梯度跨膜运输的过程 ○ 渗透现象发生的条件:半透膜、细胞内外浓度差 ○ 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。 ○ 半透膜:指一类可以让小分子物质通过而大分子物质不能通过的一类薄膜的总称。 ○ 质壁分离与复原实验可拓展应用于:(指的是原生质层与细胞壁) ①证明成熟植物细胞发生渗透作用; ②证明细胞是否是活的; ③作为光学显微镜下观察细胞膜的方法; ④初步测定细胞液浓度的大小; 2. 无机盐等其他物质 ① 不同生物吸收无机盐的种类和数量不同。 ② 物质跨膜运输既有顺浓度梯度的,也有逆浓度梯度的。 3. 选择透过性膜 可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子、小分子和大分子则不能通过的膜。 □ 生物膜是一种选择透过性膜,是严格的半透膜。 二、流动镶嵌模型 1.要点 ①磷脂双分子层 构成生物膜的基本支架,但这个支架不是静止的,它具有流动性。 ②蛋白质 镶嵌、贯穿、覆盖在磷脂双分子层上,大多数蛋白质也是可以流动的。 ③天然糖蛋白 蛋白质和糖类结合成天然糖蛋白,形成糖被具有保护、润滑和细胞识别等 2.与单位膜的异同 相同点:组成细胞膜的主要物质是脂质和蛋白质 不同点:①流:蛋白质的分布有不均匀和不对称性;强调组成膜的分子是运动的。 ②单:蛋白质均匀分布在脂双层的两侧;认为生物膜是静止结构。 三、跨膜运输的方式 例子|方式| 浓度梯度| 载体| 能量| 作用 水、甘油、气体、乙醇、苯| 自由扩散| 顺 ×| ×| 被选择吸收的物质从高浓度的一侧通过细胞膜向浓度低的一侧转运 葡萄糖进入红细胞| 协助扩散| 顺| √| × 进入红细胞的钾离子 |主动运输| 逆| √| √| 能保证活细胞按照生命活动的需要,主动地选择吸收所需要 的物质,排出新陈代谢产生的废物和对细胞要害的物质。 ○大分子或颗粒:胞吞、胞吐 四、小结 组成 决定 磷脂分子+蛋白质分子 结构 功能(物质交换) 具有 导致 保证 体现 运动性 流动性 物质交换正常 选择透过性 成分组成结构,结构决定功能。构成细胞膜的磷脂分子和蛋白质分子大都是可以流动的,因此决定了由它们构成的细胞膜的结构具有一定的流动性。结构的流动性保证了载体蛋白能把相应的物质从细胞膜的一侧转运到到另一侧。由于细胞膜上不同载体的数量不同,所以,当物质进出细胞时能体现出不同的物质进出细胞膜的数量、速度及难易程度的不同,即反映出物质交换过程中的选择透过性。可见,流动性是细胞膜结构的固有属性,无论细胞是否与外界发生物质交换关系,流动性总是存在的,而选择透过性是细胞膜生理特性的描述,这一特性,只有在流动性基础上,完成物质交换功能方能体现出来。 (五)细胞的能量供应和利用 H2O 外界 水 H2O O2 矿质元素 [H] 光 ATP 原生质 ADP+PI 热能 ATP ADP+PI CO2+H2O C3H6O3 C2H5OH+CO2 一、 酶——降低反应活化能 ◎ 新陈/细胞代谢:活细胞内全部有序化学反应的总称。 ◎ 活化能:分子从常态转变成容易发生化学反应的活跃状态所需要的能量。 1. 发现 ①巴斯德之前:发酵是纯化学反应,与生命活动无关。 ②巴斯德(法、微生物学家):发酵与活细胞有关;发酵是整个细胞。 ③利比希(德、化学家):引起发酵的是细胞中的某些物质,但这些物质只有在酵母细胞死亡并裂解后才能发挥作用。 ④比希纳(德、化学家):酵母细胞中的某些物质能够在酵母细胞破碎后继续起催化作用,就像在活酵母细胞中一样。 ⑤萨姆纳(美、科学家):从刀豆种子提纯出来的脲酶是一种蛋白质。 ⑥许多酶是蛋白质。 ⑦切赫与奥特曼(美、科学家):少数RNA具有生物催化功能。 2.定义 酶是活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质。 注: ①由活细胞产生(与核糖体有关) ②催化性质:A.比无机催化剂更能减低化学反应的活化能,提高化学反应速度。 B.反应前后酶的性质和数量没有变化。 ③成分:绝大多数酶是蛋白质,少数酶是RNA。 3.特性 ① 高效性:催化效率很高,使反应速度很快,是一般无机催化集的107——1013倍。 ② 专一性:每一种酶只能催化一种或一类化学反应。 → 多样性 。 ③ 需要合适的条件(温度和pH值) → 温和性 → 易变性 。 酶的催化作用需要适宜的温度、pH值等,过酸、过碱、高温都会破坏酶分子结构。低温也会影响酶的活性,但不破坏酶的分子结构。 解析 在底物足够,其他因素固定的条件下,酶促反应的速度与酶浓度成正比。 1.在S较低时,V随S增加而加快,近乎成正比; 2.在S较低时,V随S增加而加快,但不显著; 3.当S很大且达到一定限度时,V也达到一个最大值,此时即使再增加S,反应也几乎不再改变。 1.在一定T内V随T的 升高而加快; 2.在一定条件下,每一种酶在某一T时活力最大,称最适温度; 3.当T升高到一定限度时,V反而随温度的升高而降低。 ◎动物T:35—40℃ PH : 6.5—8.0 ◎ 酶工程 生产提取 制成 酶制剂 应用 治疗疾病;加工和生产一些产品; 和分离纯化 固定化酶 化验诊断和水质检测;其他分支。 二、ATP(三磷酸腺苷) ◎ ATP是生物体细胞内普遍存在的一种高能磷酸化合物,是生物体进行各项生命活动的直接 能源,它的水解与合成存在着能量的释放与贮存。 1.结构简式 A — P ~ P ~ P 腺苷 普通化学键13.8KJ/mol 高能磷酸键 30.54 KJ/mol 磷酸基团 2.ATP与ADP的转化 ATP 呼吸作用 (线粒体) 吸 Pi (细胞质基质) 能 吸收分泌(渗透能) (叶绿体) 放 肌肉收缩(机械能) 光合作用 Pi 能 神经传导、生物电(电能) ADP (每个活细胞) 合成代谢(化学能) 体温(热能) 萤火虫(光能) ◎ 糖类—主要能源物质 热能 散失 太阳光能 脂肪—主要储能物质 氧化 (直接能源) 蛋白质—能源物质之一 分解 化学能 ATP 水解酶、放 ◎ ATP ADP + Pi + 能量 合成酶、吸 3.能产生ATP: 线粒体、叶绿体、细胞质基质 能产生水: 线粒体、叶绿体、核糖体、细胞核 能碱基互补配对: 线粒体、叶绿体、核糖体、细胞核 三、ATP的主要来源——细胞呼吸 ◎呼吸是通过呼吸运动吸进氧气,排出二氧化碳的过程。 ◎细胞呼吸是指有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出能量并生成ATP的过程。分为: 有氧呼吸 无氧呼吸 概念 指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放能量,生成许多ATP的过程。 指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物分解成不彻底的氧化产物,同时释放出少量能量的过程。 过程 ① C6H12O6 → 2丙酮酸 + [H] + 2ATP ② 2丙酮酸+ 6H2O → 6CO2 + [H]+ 2ATP ③ [H] + 6O2 → 12H2O + 34ATP ① C6H12O6 → 2丙酮酸 + [H] + 2ATP → 2C3H6O3 ② 2丙酮酸 → 2C2H5OH + 2CO2 反应式 C6H12O6+6H2O+6O2→6CO2 + 12H2O + 38ATP C6H12O6 → 2C3H6O3 + 2ATP → 2C2H5OH + 2CO2 + 2ATP 不同点 场所 : ①②线粒体基质 ③内膜 始终在细胞质基质 条件 : 除①外,需分子氧、酶 不需分子氧、需酶 产物 : CO2 、H2O 酒精和CO2或乳酸 能量 : 大量、合成38ATP(1161KJ) 少量、合成2ATP(61.08KJ) 相同点 联系 : 从葡萄糖分解成丙酮酸阶段相同,以后阶段不同 实质 : 分解有机物,释放能量,合成ATP 意义 : 为生物体的各项生命活动提供能量;为体内其他化合物合成提供原料 ◎比较 光合作用 呼吸作用 反应场所 绿色植物(在叶绿体中进行) 所有生物(主要在线粒体中进行) 反应条件 光、色素、酶 酶(时刻进行) 物质转变 把无机物CO2和H2O合成有机物(CH2O) 分解有机物产生CO2和H2O 能量转变 把光能转变成化学能储存在有机物中 释放有机物的能量,部分转移ATP 实质 合成有机物、储存能量 分解有机物、释放能量、产生ATP 联系 有机物、氧气 光合作用 呼吸作用 能量、二氧化碳 ◎ 光合作用的实质 通过光反应把光能转变成活跃的化学能,通过暗反应把二氧化碳和水合成有机物,同时把活跃的化学能转变成稳定的化学能贮存在有机物中。 四、光和光合作用 ◎光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的 有机物,并释放出氧气的过程。影响因素有:光、温度、CO2浓度、水分、矿质元素等。 1.发现 内容 时间 过程 结论 普里斯特 1771年 蜡烛、小鼠、绿色植物实验 植物可以更新空气 萨克斯 1864年 叶片遮光实验 绿色植物在光合作用中产生淀粉 恩格尔曼 1880年 水绵光合作用实验 叶绿体是光合作用的场所释放出氧。 鲁宾与卡门 1939年 同位素标记法 光合作用释放的氧全来自水 2.场所 双层膜 叶绿体 基质 基粒 多个类囊体(片层)堆叠而成 胡萝卜素(橙黄色)1/3 类胡萝卜素 叶黄素(黄色) 2/3 吸蓝紫光 色素 (1/4) 叶绿素A(蓝绿色)3/4 叶绿素(3/4) 叶绿素B(黄绿色)1/4 吸红橙和蓝紫光 3.过程 光反应 暗反应 条件 光、色素、酶 CO2、[H]、ATP、酶 时间 短促 较缓慢 场所 内囊体的薄膜 叶绿体的基质 过程 ① 水的光解 2H2O → 4[H] + O2 ② ATP的合成/光合磷酸化 ADP + Pi + 光能 → ATP ① CO2的固定 CO2 + C5 → 2C3 ② C3/ CO2的还原 2C3 + [H] →(CH2O) 实质 光能 → 化学能,释放O2 同化CO2,形成(CH2O) 总式 CO2 + H2O → (CH2O)+ O2 或 CO2 + 12H2O → (CH2O)6 + 6O2 + 6H2O 物变 无机物CO2、H2O → 有机物(CH2O) 能变 光能 → ATP中活跃的化学能 → 有机物中稳定的化学能 ◎ 同位素示踪 14C 光反应 2C 3 暗反应 (14CH2O) 3H2O 固定 [3H] 还原 (C3H2O) H218O 光 18O2 ◎ 人为创设条件,看物质变化: 1. 光照 → [H]和ATP → 暗反应 → (CH2O) ↓ ↓ ↓ ↓ 切断 → 不能生成 → 不能进行 → 不能生成 2. CO2 → C5 → C3 → (CH2O) ↓ ↓ ↓ ↓
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
百度文库里找
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询