高中数学,函数导函数,谢谢!

函数f(x)=(1+x)^2-2a·ln(1+x)在(-2,-1)上为增函数,在(-00,-2)上为减函数(1)求f(x)【已求解,f(x)=(1+x)^2-2ln(1+... 函数f(x)=(1+x)^2-2a·ln(1+x)在(-2,-1)上为增函数,在(-00,-2)上为减函数
(1)求f(x)【已求解,f(x)=(1+x)^2-2ln(1+x)】
(2)是否存在实数b,使得关于x的方程f(x)=x^2+x+b在区间[0,2]上恰好有两根?

要过程,谢谢!
展开
万任谜
2010-12-09 · TA获得超过796个赞
知道小有建树答主
回答量:128
采纳率:0%
帮助的人:105万
展开全部
假设有,则(1+x)^2-2ln(1+x)=x^2+x+b
x+1-b=ln(1+x)^2,所以 e^(x+1-b)-(1+x)^2=0
令g(x)=e^(x+1-b)-(1+x)^2,g(0)=0
g'(x)=e^(x+1-b)-2(1+x)
若g'(2)>=0,即b<=3-ln6时,在[0,2]上正好有两个交点
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式