一道积分题 如图 请问 是否正确 或错在哪?
1个回答
展开全部
答:
这一步不对:∫1-√x/(1+√x) d(√x*√x) → ∫ 1dx - ∫√x*1/(2√x)/(1+√x) d(√x+1)
右边如果是∫√x*1/(2√x)/(1+√x),那就是d(x*√x)了。
其实将√x看做t,d(t^2)=2tdt
应该是:∫1-√x/(1+√x) d(√x*√x) → ∫ 1dx - ∫√x*2√x/(1+√x) d(√x+1)
=x - 2∫ x/(1+√x) d(√x+1) 还是不能一下得到结果。
无理式最好还是换元来做,令√x=t,则x=t^2,dx=2tdt。
原积分=∫2t/(1+t)dt
=∫ 2- 2/(1+t) d(1+t)
=2t-2ln|1+t| + C
=2√x-2ln(1+√x) + C
这一步不对:∫1-√x/(1+√x) d(√x*√x) → ∫ 1dx - ∫√x*1/(2√x)/(1+√x) d(√x+1)
右边如果是∫√x*1/(2√x)/(1+√x),那就是d(x*√x)了。
其实将√x看做t,d(t^2)=2tdt
应该是:∫1-√x/(1+√x) d(√x*√x) → ∫ 1dx - ∫√x*2√x/(1+√x) d(√x+1)
=x - 2∫ x/(1+√x) d(√x+1) 还是不能一下得到结果。
无理式最好还是换元来做,令√x=t,则x=t^2,dx=2tdt。
原积分=∫2t/(1+t)dt
=∫ 2- 2/(1+t) d(1+t)
=2t-2ln|1+t| + C
=2√x-2ln(1+√x) + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询