如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN平行于BC,设MN交∠BCA的角平分线于点E,交∠ 10

如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN平行于BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于F。问当点O运动到何处时,四边形A... 如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN平行于BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于F 。

问 当点O运动到何处时,四边形AECF是矩形?证明你的结论 。

不好意思 图传不了 。
展开
492835705
2010-12-05 · TA获得超过196个赞
知道答主
回答量:101
采纳率:0%
帮助的人:0
展开全部
如果四边形AECF是矩形,那么O肯定是AC的中点,很简单,因为O是矩形的两条斜边的交点。
所以可以给出假设:当O为AC的中点时,该结论成立:
证明过程(电脑书写不便,以文字叙述为主):
(思路----考虑到角平分线的性质,即平分角,所以标出题目中与证明有关重要的相等的角)
角ACE等于角BCE,由于MN平行BC,所以又有角BCE等于角FEC;
联系上面两个角相等关系,有ACE=FEC;
所以三角形COE为等腰三角形,所以EO=OC;
同理可得,FO=OC;
所以EO=0C=OF;
联系前面的假设,O为AC的中点,所以有EO=0F=0C=OA,所以四边形AECF是矩形;
故假设成立,结论得证。
一个小铁罐
2012-03-23 · TA获得超过191个赞
知道答主
回答量:69
采纳率:0%
帮助的人:25.4万
展开全部
解:(1)OE=OF
理由是:∵MN∥BC
∴∠OEC=∠BCE
∵∠ACE=∠BCE∴∠OEC=∠ACE
∴OE=OC
同理OF=OC
∴OE=OF
(2)当O在AC的中点是,四边形AECF是矩形
理由是:∵OA=OC,OE=OF
∴四边形AECF是平行四边形
∵OA+OC=OE+OF
即AC=EF
∴四边形AECF是矩形
(用有一角是直角的平行四边形是矩形亦可)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
枫叶揺
2012-06-04 · TA获得超过419个赞
知道答主
回答量:49
采纳率:0%
帮助的人:7.1万
展开全部
解:当点O运动到AC的中点时,四边形AECF是矩形.
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,
∴四边形AECF是平行四边形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
粉黛呵
2010-12-07
知道答主
回答量:12
采纳率:0%
帮助的人:1.7万
展开全部
由题∠ACE=∠ECB,∠ACF=∠FCD (角平分线),所以2∠ACE+2∠ACF=180,所以∠ECF=90,即EC⊥CF。又AECF为矩形,有AF⊥CF,所以EC‖AF,得∠FAC=∠ACE,∠AFE=∠FEC。结合MN‖BC,∠FEC=∠ECB=∠ACE(内错角,角平分线)。所以∠FAC=∠ACE=∠AFE,即OF=OA。同理可证OF=OC,所以OA=OC,即四边形AECF是矩形时,O为AC的中点。

参考资料: http://zhidao.baidu.com/question/81285833.html

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wanzhisong712
2010-12-05 · 超过12用户采纳过TA的回答
知道答主
回答量:45
采纳率:0%
帮助的人:24.1万
展开全部
O点运行到AC的中点的时候,四边形AECF是矩形。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式