用参数方程来计算定积分的这个公式是如何推导的呢

用参数方程来计算定积分的这个公式是如何推导的呢请大神写一下详细过程...感谢!... 用参数方程来计算定积分的这个公式是如何推导的呢请大神写一下详细过程...感谢! 展开
 我来答
帐号已注销
2020-10-07 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:160万
展开全部

A=(1/2)∮(xdy-ydx)这是格林公式求xoy平面上面积公式

若平面曲线是参数式

因x=x(t),y=(t),dx=x'dt,dy=y'dt

即可用x(t)和y(t)代替x和y

用x'dt代替dx,用y'dt代替dy

A=1/2∮[x(t)y'(t)-y(t)x']dt

平面直角坐标系中,如果曲bai线上任意一点的坐标x、y都是某个变数dut的函数。

曲线的极坐标参数方程ρ=f(t),θ=g(t)。

圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。

椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。

扩展资料:

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

牛顿-莱布尼茨公式

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

参考资料来源:百度百科-定积分

郎云街的月
2017-03-05 · TA获得超过4344个赞
知道大有可为答主
回答量:1767
采纳率:86%
帮助的人:584万
展开全部

如图

追答

追问
谢谢~
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
良良DD
2020-04-06
知道答主
回答量:1
采纳率:0%
帮助的人:618
展开全部
你好,这是哪本书?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式