根号下a方减去x方,对x求不定积分怎么求

 我来答
教育小百科达人
推荐于2019-09-25 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:478万
展开全部

分部积分法按下图可以间接求出这个不定积分。

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。

不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

扩展资料:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

证明:如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。

由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。

因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

参考资料:百度百科---不定积分

hxzhu66
高粉答主

2016-12-14 · 醉心答题,欢迎关注
知道大有可为答主
回答量:2.6万
采纳率:97%
帮助的人:1.2亿
展开全部

你好!用分部积分法按下图可以间接求出这个不定积分。经济数学团队帮你解答,请及时采纳。谢谢!

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
liuqiang1078
推荐于2018-03-06 · TA获得超过10万个赞
知道大有可为答主
回答量:7033
采纳率:81%
帮助的人:3374万
展开全部


以上,请采纳。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
糖糖小小个
2019-12-21 · TA获得超过9023个赞
知道小有建树答主
回答量:1592
采纳率:82%
帮助的人:44.6万
展开全部

根号下a方减去x方,对x求不定积分怎么求一两句说不清楚,请直接看图:

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我才是无名小将
高粉答主

2016-12-14 · 每个回答都超有意思的
知道顶级答主
回答量:6.1万
采纳率:89%
帮助的人:2.4亿
展开全部
可令x=asint,根号(a^2-x^2)=acost,t=arcsin(x/a)
dx=acostdt
积分符号不好写,省去,原式可化为:
acost*acostdt=a^2 *(cost)^2 dt=a^2*(cos2t+1)/2 dt
=a^2/4*cos2t d(2t)+a^2/2 dt
=a^2 /4 sin2t+a^2 *t/2+c
=2x*根号(a^2-x^2)/a^2+a^1/2*a^2*arcsin(x/a)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式